Галлий получение. Где встречается галлий в природе

Cтраница 1


Применение галлия в качестве термометрической жидкости в корпусе из плавленого кварца позволяет производить измерения до 1200 С, не используя высокие давления. Изготовление и эксплуатация галлиевых термометров связаны с рядом затруднений. Галлий легко окисляется и в присутствии окислов начинает налипать на кварцевую поверхность, поэтому заполнение термометра металлом необходимо производить в водородной атмосфере.  

Очень интересно применение галлия для холодной пайки керамических и металлических изделий. Этот способ рекомендуется для присоединения тонких проводов в приборах, где нагревание нежелательно. Для этого жидкий галлий смешивают с порошкообразным металлом - медью, никелем, серебром или золотом в соответствующей пропорции; пасту наносят на места соединения.  

Представляет интерес применение галлия (Са-72) при изучении рака костей [ 51, так как некоторые радиоактивные соединения галлия абсорбируются раковой опухолью, что позволяет ее обнаружить.  

Очень интересно применение галлия для холодной пайки керамических и металлических изделий. Этот способ рекомендуется для присоединения тонких проводов в приборах, где нагревание нежелательно.  

Поверхность стекла, равномерно увлажненная жидким галлием. Жидкий галлий нанесен на обычное лабораторное часовое стекло. После далення избытка металла выпуклая поверхность представляет собой чистое, хотя н не вполне совершенное зеркало (А. чюминум кимиани оф Америка.  

Наиболее перспективным становится применение галлия в интерметаллических соединениях, которые являются полупроводниками.  

Весьма перспективной областью применения галлия, его сплавов и соединений является полупроводниковая аппаратура и радиоэлектроника. Так, например, известно применение галлия для легирования германия и образования р-п-переходов в монокристаллах германия, имеющих надежные электрические характеристики.  

Весьма перспективной областью применения галлия, его сплавов и соединений является полупроводниковая аппаратура и радиоэлектроника. Так, например, известно применение галлия для легирования германия и образования р-п-лереходов в монокристаллах германия, имеющих надежные электрические характеристики.  

Ввиду трудности получения и ограниченности применения галлия, индия и таллия мировое производство каждого из них невелико, но за последнее десятилетие резко возросло.  

Известно также применение жидкого галлия в электроламповой промышленности, а также при изготовлении радиоламп; этот вид применения галлия основан на сравнительно малой упругости его паров при высоких температурах. Благодаря его низкой точке плавления (29 78) галлий и его сплавы (с Bi, Pb, Sn, Cd) применяются для автоматических предохранительных и сигнальных пожарных систем, а также в качестве термоограничителей в электротехнике.  

Применение галлия, индия и таллия в современной технике основано на специфических свойствах каждого из них.  

Галлиевые покрытия применяют для повышения отражательной способности специальных оптических устройств, в полупроводниковых приборах, для узлов трения, работающих при повышенных температурах в вакууме как жидкая металлическая смазка. Ограничением применения галлия в узлах трения является переход его в твердое состояние ниже 30 С, что вызывает резкое возрастание коэффициента трения.  

Широкий температурный интервал существования жидкой фазы металлического галлия, низкое давление его паров и малое сечение захвата нейтронов являются ценными свойствами для его применения в качестве теплоносителя. Препятствием к применению галлия в этой области служит его активное взаимодействие при рабочих температурах с большинством конструкционных материалов. Эвтектический сплав Ga - Zn - Sn оказывает меньшее коррозионное действие на металлы, чем чистый галлий.  

В некоторых случаях применяют комбинирование самосмазывающегося сепаратора с гальваническим покрытием дорожек качения никелем, кобальтом, серебром, золотом, индием. Проводят работы по применению галлия и его сплавов. Интерес, проявленный к галлию и его сплавам, объясняется рядом присущих этому металлу благоприятных свойств для его применения в качестве смазки.  

Об элементе с атомным номером 31 большинство читателей помнят только, что это один из трех элементов, предсказанных и наиболее подробно описанных Д.И. Менделеевым, и что галлий – весьма легкоплавкий металл: чтобы превратить его в жидкость, достаточно тепла ладони.

Впрочем, галлий – не самый легкоплавкий из металлов (даже если не считать ртуть). Его температура плавления 29,75°C, а цезий плавится при 28,5°C; только цезий, как и всякий щелочной металл, в руки не возьмешь, поэтому на ладони, естественно, галлий расплавить легче, чем цезий.

Спой рассказ об элементе №31 мы умышленно начали с упоминания о том, что известно почти всем. Потому что это «известное» требует пояснений. Все знают, что галлий предсказан Менделеевым, а открыт Лекоком де Буабодраном, но далеко не всем известно, как произошло открытие. Почти все знают, что галлий легкоплавок, но почти никто не может ответить на вопрос, почему он легкоплавок.

Как был открыт галлий

Французский химик Поль Эмиль Лекок де Буабодран вошел в историю как открыватель трех новых элементов: галлия (1875), самария (1879) и диспрозия (1886). Первое из этих открытий принесло ему славу.

В то время за пределами Франции он был мало известен. Ему было 38 лет, занимался он преимущественно спектроскопическими исследованиями. Спектроскопистом Лекок де Буабодран был хорошим, и это, в конечном счете, привело к успеху: все три свои элемента он открыл методом спектрального анализа.

В 1875 г. Лекок де Буабодран исследовал спектр цинковой обманки, привезенной из Пьеррфита (Пиренеи). В этом спектре и была обнаружена новая фиолетовая линия (длина волны 4170 Å). Новая линия свидетельствовала о присутствии в минерале неизвестного элемента, и, вполне естественно, Лекок де Буабодран приложил максимум усилий, чтобы этот элемент выделить. Сделать это оказалось непросто: содержание нового элемента в руде было меньше 0,1%, и во многом он был подобен цинку*. После длительных опытов ученому удалось-таки получить новый элемент, но в очень небольшом количестве. Настолько небольшом (меньше 0,1 г), что изучить его физические и химические свойства Лекок де Буабодрап смог далеко не полно.

* О том, как получают галлий из цинковой обманки, рассказано ниже.

Сообщение об открытии галлия – так в честь Франции (Галлия – ее латинское название) был назван новый элемент – появилось в докладах Парижской академии наук.

Это сообщение прочел Д.И. Менделеев и узнал в галлии предсказанный им пятью годами раньше экаалюминий. Менделеев тут же написал в Париж. «Способ открытия и выделения, а также немногие описанные свойства заставляют предполагать, что новый металл не что иное, как экаалюминий», – говорилось в его письме. Затем он повторял предсказанные для этого элемента свойства. Более того, никогда не держа в руках крупинки галлия, не видя его в глаза, русский химик утверждал, что первооткрыватель элемента ошибся, что плотность нового металла не может быть равна 4,7, как писал Лекок де Буабодран, – она должна быть больше, примерно 5,9...6,0 г/см 3 !

Как это ни странно, но о существовании периодического закона первый из его утвердителен, «укрепителен», узнал лишь из этого письма. Он еще раз выделил и тщательно очистил крупицы галлия, чтобы проверить результаты первых опытов. Некоторые историки науки считают, что делалось это с целью посрамить самоуверенного русского «предсказателя». Но опыт показал обратное: ошибся первооткрыватель. Позже он писал: «Не нужно, я думаю, указывать на исключительное значение, которое имеет плотность нового элемента в отношении подтверждения теоретических взглядов Менделеева».

Почти точно совпали с данными опыта и другие предсказанные Менделеевым свойства элемента №31. «Предсказания Менделеева оправдались с незначительными отклонениями: экаалюминий превратился в галлий». Так характеризует это событие Энгельс в «Диалектике природы».

Нужно ли говорить, что открытие первого из предсказанных Менделеевым элементов значительно укрепило позиции периодического закона.

Почему галлий легкоплавок?

Предсказывая свойства галлия, Менделеев считал, что этот металл должен быть легкоплавким, поскольку его аналоги по группе – алюминий и индий – тоже тугоплавкостью не отличаются.

Но температура плавления галлия необычно низкая, в пять раз ниже, чем у индия. Объясняется это необычным строением кристаллов галлия. Его кристаллическая решетка образована не отдельными атомами (как у «нормальных» металлов), а двухатомными молекулами. Молекулы Ga 2 очень устойчивы, они сохраняются даже при переводе галлия в жидкое состояние. Но между собой эти молекулы связаны лишь слабыми вандерваальсовыми силами, и для разрушения их связи нужно совсем немного энергии.

С двухатомностью молекул связаны еще некоторые свойства элемента №31. В жидком состоянии галлий плотнее и тяжелее, чем в твердом. Электропроводность жидкого галлия также больше, чем твердого.

Внешне – больше всего на олово: серебристо-белый мягкий металл, на воздухе он не окисляется и не тускнеет.

А по большинству химических свойств галлий близок к алюминию. Как и у алюминия, на внешней орбите атома галлия три электрона. Как и алюминий, галлий легко, даже на холоду, взаимодействует с галогенами (кроме иода). Оба металла легко растворяются в серной и соляной кислотах, оба реагируют со щелочами и дают амфотерные гидроокиси. Константы диссоциации реакций

Ga(OH) 3 → Ga 3+ + 3OH –

Н 3 GаО 3 → 3Н + + GaO 3– 3

– величины одного порядка.

Есть, однако, и отличия в химических свойствах галлия и алюминия.

Сухим кислородом галлий заметно окисляется лишь при температуре выше 260°C, а алюминий, если лишить его защитной окисной пленки, окисляется кислородом очень быстро.

С водородом галлий образует гидриды, подобные гидридам бора. Алюминий же способен только растворять водород, но не вступать с ним в реакцию.

А еще галлий похож на графит, на кварц, на воду.

На графит – тем, что оставляет серый след на бумаге.

На кварц – электрической и тепловой анизотропностью.

Величина электрического сопротивления кристаллов галлия зависит от того, вдоль какой оси проходит ток. Отношение максимума к минимуму равно 7 – больше, чем у любого другого металла. То же и с коэффициентом теплового расширения.

Величины его в направлении трех кристаллографических осей (кристаллы галлия ромбические) относятся как 31:16:11.

А на воду галлий похож тем, что, затвердевая, он расширяется. Прирост объема заметный – 3,2%.

Уже одно сочетание этих противоречивых сходств говорит о неповторимой индивидуальности элемента №31.

Кроме того, у него есть свойства, не присущие ни одному элементу. Расплавленный, он может многие месяцы оставаться в переохлажденном состоянии при температуре ниже точки плавления. Это единственный из металлов, который остается жидкостью в огромном интервале температур от 30 до 2230°C, причем летучесть его паров минимальна. Даже в глубоком вакууме он заметно испаряется лишь при 1000°C. Пары галлия в отличие от твердого и жидкого металла одноатомны. Переход Ga 2 → 2Ga требует больших затрат энергии; этим и объясняется трудность испарения галлия.

Большой температурный интервал жидкого состояния – основа одного из главных технических применений элемента №31.

На что галлий годен?

Галлиевые термометры позволяют в принципе измерить температуру от 30 до 2230°C. Сейчас выпускаются галлиевые термометры для температур до 1200°C.

Элемент №31 идет на производство легкоплавких сплавов, используемых в сигнальных устройствах. Сплав галлия с индием плавится уже при 16°C. Это самый легкоплавкий из всех известных сплавов.

Как элемент III группы, способствующий усилению в полупроводнике «дырочной» проводимости, галлий (чистотой не меньше 99,999%) применяют как присадку к германию и кремнию.

Интерметаллические соединения галлия с элементами V группы – сурьмой и мышьяком – сами обладают полупроводниковыми свойствами.

Добавка галлия в стеклянную массу позволяет получить стекла с высоким коэффициентом преломления световых лучей, а стекла на основе Ga 2 O 3 хорошо пропускают инфракрасные лучи.

Жидкий галлий отражает 88% падающего на него света, твердый – немногим меньше. Поэтому делают очень простые в изготовлении галлиевые зеркала – галлиевое покрытие можно наносить даже кистью.

Иногда используют способность галлия хорошо смачивать твердые поверхности, заменяя им ртуть в диффузионных ваккумных насосах. Такие насосы лучше «держат» вакуум, чем ртутные.

Предпринимались попытки применить галлий в атомных реакторах, но вряд ли результаты этих попыток можно считать успешными. Мало того, что галлий довольно активно захватывает нейтроны (сечение захвата 2,71 барна), он еще реагирует при повышенных температурах с большинством металлов.

Галлий не стал атомным материалом. Правда, его искусственный радиоактивный изотоп 72 Ga (с периодом полураспада 14,2 часа) применяют для диагностики рака костей. Хлорид и нитрат галлия-72 адсорбируются опухолью, и, фиксируя характерное для этого изотопа излучение, медики почти точно определяют размеры инородных образований.

Как видите, практические возможности элемента №31 достаточно широки. Использовать их полностью пока не удается из-за трудности получения галлия – элемента довольно редкого (1,5 10 –3 % веса земной коры) и очень рассеянного. Собственных минералов галлия известно немного. Первый и самый известный его минерал, галлит CuGaS 2 обнаружен лишь в 1956 г. Позже были найдены еще два минерала, совсем уже редких.

Обычно же галлий находят в цинковых, алюминиевых, железных рудах, а также в каменном угле – как незначительную примесь. И что характерно: чем больше эта примесь, тем труднее ее извлечь, потому что галлия больше в рудах тех металлов (алюминий, цинк), которые близки ему по свойствам. Основная часть земного галлия заключена в минералах алюминия.

Извлечение галлия – «удовольствие» дорогое. Поэтому элемент №31 используется в меньших количествах, чем любой его сосед по периодической системе.

Не исключено, конечно, что наука ближайшего будущего откроет в галлии нечто такое, что он станет совершенно необходимым и незаменимым, как это случилось с другим элементом, предсказанным Менделеевым, – германием. Всего 30 лет назад его применяли еще меньше, чем галлий, а потом началась «эра полупроводников»...

Поиски закономерностей

Свойства галлия предсказаны Д.И. Менделеевым за пять лет до открытия этого элемента. Гениальный русский химик строил свои предсказания на закономерностях изменения свойств по группам периодической системы. Но и для Лекока де Буабодрана открытие галлия не было счастливой случайностью. Талантливый спектроскопист, он еще в 1863 г. обнаружил закономерности в изменении спектров близких по свойствам элементов. Сравнивая спектры индия и алюминия, он пришел к выводу, что у этих элементов может быть «собрат», линии которого заполнили бы пробел в коротковолновой части спектра. Именно такую недостающую линию он искал и нашел в спектре цинковой обманки из Пьеррфита.

Приводим для сравнения таблицу основных свойств, предсказанного Д.И. Менделеевым экаалюминия и открытого Лекоком де Буабодраном галлия.

Экаалюминий Галлий
Атомный вес около 68 Атомный вес 69,72
Должен быть низкоплавким Температура плавления 29,75°C
Удельный вес близок к 6,0 Удельный вес 5,9 (в твердом состоянии) и 6,095 (в жидком)
Атомный объем 11,5 Атомный объем 11,8
Не должен окисляться на воздухе Слегка окисляется только при духекрасном калении
При высокой температуре должен разлагать воду При высокой температуре раз лагает воду
Формулы соединений:
ЕаСl 3 Еа 2 О 3 , Еа 2 (SO 4) 3
Формулы соединений:
GaCl 3 , Ga 3 О 3 , Ga 2 (SO 4) 3
Должен образовывать квасцы Еа 2 (SO 4) 3 Ме 2 SO 4 · 24H 2 О, но труднее, чем алюминий Образует квасцы состава (NH 4) Ga(SO 4) 2 · 12H 2 O
Окись Еа 2 О 3 должна легко восстанавливаться и давать металл более летучий, чем Аl, а пото му можно ожидать, что экаалю миний будет открыт путем спектрального анализа Галлий легко восстанавливается из окиси прокаливанием в токе водорода, открыт при помощи спектрального анализа

Игра слов?

Некоторые историки науки видят в названии элемента №31 не только патриотизм, но и нескромность его первооткрывателя. Принято считать, что слово «галлий» происходит от латинского Gallia (Франция). Но при желании в том же слове можно усмотреть намек на слово «петух»! По-латыни «петух» – gallus, по-французски – le coq. Лекок де Буабодран?

В зависимости от возраста

В минералах галлий часто сопутствует алюминию. Интересно, что соотношение этих элементов в минерале зависит от времени образования минерала. В полевых шпатах один атом галлия приходится на 120 тыс. атомов алюминия. В нефелинах, образовавшихся намного позже, это соотношение уже 1:6000, а в еще более «молодой» окаменевшей древесине – всего 1:13.

Первый патент

Первый патент на применение галлия взят 60 лет назад. Элемент №31 хотели использовать в дуговых электрических лампах.

Серу вытесняет, серой защищается

Интересно происходит взаимодействие галлия с серной кислотой. Оно сопровождается выделением элементарной серы. При этом сера обволакивает поверхность металла и препятствует его дальнейшему растворению. Если же обмыть металл горячей водой, реакция возобновится, и будет идти до тех пор, пока на галлии не нарастет новая «шкура» из серы.

Вредное влияние

Жидкий галлий взаимодействует с большинством металлов, образуя сплавы и интерметаллические соединения с довольно низкими механическими свойствами. Именно поэтому соприкосновение с галлием приводит многие конструкционные материалы к потере прочности. Наиболее устойчив к действию галлия бериллий: при температуре до 1000°C он успешно противостоит агрессивности элемента №31.

И окись тоже!

Незначительные добавки окиси галлия заметно влияют на свойства окисей многих металлов. Так, примесь Ga 2 O 3 к окиси цинка значительно уменьшает ее спекаемость. Зато растворимость цинка в таком окисле намного больше, чем в чистом. А у двуокиси титана при добавлении Ga 2 O 3 резко падает электропроводность.

Как получают галлий

Промышленных месторождений галлиевых руд в мире не найдено. Поэтому галлий приходится извлекать из очень небогатых им цинковых и алюминиевых руд. Поскольку состав руд и содержание в них галлия неодинаковы, способы получения элемента №31 довольно разнообразны. Расскажем для примера, как извлекают галлий из цинковой обманки – минерала, в котором этот элемент был обнаружен впервые.

Прежде всего, цинковую обманку ZnS обжигают, а образовавшиеся окислы выщелачивают серной кислотой. Вместе с многими другими металлами галлий переходит в раствор. Преобладает в этом растворе сульфат цинка – основной продукт, который надо очистить от примесей, в том числе и от галлия. Первая стадия очистки – осаждение так называемого железного шлама. При постепенной нейтрализации кислого раствора этот шлам выпадает в осадок. В нем оказывается около 10% алюминия, 15% железа и (что для нас сейчас наиболее важно) 0,05...0,1% галлия. Для извлечения галлия шлам выщелачивают кислотой или едким натром – гидроокись галлия амфотерна. Щелочной способ удобнее, поскольку в этом случае можно делать аппаратуру из менее дорогих материалов.

Под действием щелочи соединения алюминия и галлия переходят в раствор. Когда этот раствор осторожно нейтрализуют, гидроокись галлия выпадает в осадок. Но в осадок переходит и часть алюминия. Поэтому осадок растворяют еще раз, теперь уже в соляной кислоте. Получается раствор хлористого галлия, загрязненный преимущественно хлористым алюминием. Разделить эти вещества удается экстракцией. Приливают эфир и, в отличие от АlСl 3 , GаСl 3 почти полностью переходит в органический растворитель. Слои разделяют, отгоняют эфир, а полученный хлорид галлия еще раз обрабатывают концентрированным едким натром, чтобы перевести в осадок и отделить от галлия примесь железа. Из этого щелочного раствора и получают металлический галлий. Получают электролизом при напряжении 5,5 в. Осаждают галлий на медном катоде.

Галий и зубы

Долгое время считалось, что галлий токсичен. Лишь в последние десятилетия это неправильное мнение опровергнуто. Легкоплавкий галлий заинтересовал стоматологов. Еще в 1930 г. было впервые предложено заменить галлием ртуть в композициях для пломбирования зубов. Дальнейшие исследования и у нас, и за рубежом подтвердили перспективность такой замены. Безртутные металлические пломбы (ртуть заменена галлием) уже применяются в стоматологии.

Химия

Галлий №31

Подгруппа галлия. Содержание каждого из членов данной подгруппы в земной коре по ряду галлий (4-10~4%) -индий (2-10~6) - таллий (8-10-7) уменьшается. Все три" элемента чрезвычайно распылены, и нахождение в виде определенных минералов для них не характерно. Напротив, незначительные примеси их соединений содержат руды многих металлов. Получают Ga, In и Тi из отходов при переработке подобных руд.
В свободном состоянии галлий, индий и таллий представляют собой серебристо-белые металлы. Их важнейшие константы сопоставлены ниже:
Ga In Tl

Физические свойства галлия

Плотность, g/cjH3 5,9 7,3 11,9
Температура плавления, °С. . . 30 157 304
Температура кипения, °С... . 2200 2020 1475
Электропроводность (Hg = 1) . . 2 11 6

По твердости галлий близок к свинцу , In и Тi - еще мягче 6-13.
В сухом воздухе галлий и индий не изменяются , а таллий покрывается серой пленкой окисла. При накаливании все три элемента энергично соединяются с кислородом и серой . С хлором и бромом они взаимодействуют уже при обычной температуре, с иодом -лишь при нагревании. Располагаясь в ряду напряжений около железа , Ga, In и Тi растворимы в кислотах.14’ 15
Обычная валентность галлия и индия равна трем. Таллий дает производные, в которых он трех- и одновалентен. 18
Окиси галлия и его аналогов - белая Ga 2 O 3 , желтая 1п203 и коричневая Т1203 - в воде нерастворимы - отвечающие им гидроокиси Э (ОН)3 (которые могут быть получены исходя из солей) представляют собой студенистые осадки, практически нерастворимые в воде, но растворяю-щиеся в кислотах. Белые гидроокиси Ga и In растворимы также в растворах сильных щелочей с образованием аналогичных алюминатам галлатов и индатов. Они имеют, следовательно, амфотерный характер, причем кислотные свойства выражены у 1п(ОН) 3 слабее, а у Ga(OH) 3 сильнее, чем у Аl(ОН) 3 . Так, помимо сильных щелочей, Ga(OH) 3 растворима в крепких растворах NH 4 OH. Напротив, краснокоричневая Ti(ОН) 3 в щелочах не растворяется.
Ионы Ga"" и In" бесцветны, ион Тi" имеет желтоватую окраску. Производящиеся от них соли большинства кислот хорошо растворимы в воде, но сильно гидролизованы; Из растворимых солей слабых кислот многие подвергаются практически полному гидролизу. В то время как производные низших валентностей Ga и In для них не типичны, для таллия наиболее характерны именно те соединения, в которых он одновалентен. Поэтому соли Т13+ имеют заметно выраженные окислительные свойства.


Закись таллия (Т120) образуется в результате взаимодействия элементов при высоких температурах. Она представляет собой черный гигроскопичный порошок. С водой закись таллия образует желтый гидрат закиси (Т10Н), который при нагревании легко отщепляет воду и переходит обратно в Т120.
Гидрат закиси таллия хорошо растворим в воде и является сильным основанием. Образуемые им соли в большинстве бесцветны и
кристаллизуются без воды. Хлорид, бромид и иодид почти нерастворимы, но некоторые другие ] соли растворимы в воде. Произволные TiOН и слабых кислот вследствие гидролиза дают в растворе щелочную реакцию. При дей- : ствии сильных окислителей (например, хлорной воды) одновалентный таллий окисляется до трехвалентного.57-66
По химическим свойствам элементов и их соединений подгруппа галлия во многом похожа " на подгруппу германия. Так, для Ge и Ga более устойчива высшая валентность, для РЬ и Т1 низшая, химический характер гидроокисей в рядах Ge-Sn-РЬ и Ga-In-Тi изменяется однотипно. Иногда проявляются далее более тонкие ‘ черты сходства, например малая растворимость галоидных (Cl, Br, I) солей как РЬП, так и Тi . При всем том между элементами обеих подгрупп имеются и существенные различия (частично обусловленные их разной валентностью) : кислотный характер гидроокисей Ga и его аналогов выражен значительно слабее, чем у соответствующих элементов подгруппы германия , в противополжность PbF 2 фтористый таллий хорошо растворим и т. д.

Галлий дополнения

  1. Все три члена рассматриваемой подгруппы открыты при помощи спектроскопа: 1 таллий - в 1861 г., индий - в 1863 г. и галлий - в 1875 г. Последний из этих элементов за 4 года до его открытия был предсказан и описан Д. И. Менделеевым (VI § 1). Природный галлий слагается из изотопов с массовыми числами 69 (60,2%) и 71 (39,8); индий-113 (4,3) и 115 (95,7); таллий - 203 (29,5) и 205 (70,5%).
  2. В основном состоянии атомы элементов подгруппы галлия имеют строение внешних электронных оболочек 4s2 34p (Ga), 5s25p (In), 6s26p (Tl) и одновалентны, i Возбуждение трехвалентных состояний требует затраты 108 (Ga), 100 (In) или 129 , (Тi) ккал/г-атом. Последовательные энергии ионизации равны 6,00; 20,51; 30,70 для Ga; 5,785; 18,86; 28,03 для In: 6,106; 20,42; 29,8 эв для Т1. Сродство атома таллия к электрону оценивается в 12 ккал/г-атом.
  3. Для галлия известен редкий минерал галлит (CuGaS 2). Следы этого элемента постоянно содержатся в цинковых рудах. Значительно большие его количества: Е (до 1,5%) были обнаружены в золе некоторых каменных углей. Однако основным сырьем для промышленного получения галлия служат бокситы, обычно содержащие незначительные его примеси (до 0,1%). Извлекается он электролизом из щелочных жидкостей, являющихся промежуточным продуктом переработки природных бокситов на технический глинозем. Размеры ежегодной мировой выработки галлия исчисляются пока немногими тоннами, но могут быть значительно увеличены.
  4. Индий получают главным образом в качестве побочного продукта при комплексной переработке сернистых руд Zn, Pb и Си. Его ежегодная мировая выработка составляет несколько десятков тонн.
  5. Таллий концентрируется главным образом в пирите (FeS2). Поэтому шламы сернокислотного производства являются хорошим сырьем для получения этого элемента. Ежегодная мировая выработка таллия меньше, чем индия, но также исчисляется десятками тонн.
  6. Для выделения Ga, In и Т1 в свободном состоянии применяется или электролиз растворов их солей, или накаливание окислов в токе водорода. Теплоты плавления и испарения металлов имеют следующие значения: 1,3 и 61 (Ga), 0,8 и 54 (In), 1,0 и 39 ккал/г-атом (Т1). Теплоты их возгонки (при 25 °С) составляют 65 (Ga), 57 (In) и 43 ккал/г-атом (Т1). В парах все три элемента состоят почти исключительно из одноатомных молекул.
  7. Кристаллическая решетка галлия образована не отдельными атомами (как обычно для металлов), а двухатомными молекулами (rf = 2,48A). Она представляет собой, таким образом, интересный случай сосуществования молекулярной и металлической структур (III § 8). Молекулы Ga2 сохраняются и в жидком галлии, плотность которого (6,1 г/см) больше плотности твердого металла (аналогия с водой и висмутом). Повышение давления сопровождается снижением температуры плавления галлия. При высоких давлениях, помимо обычной модификации (Gal), установлено существование двух других его форм. Тройные точки (с жидкой фазой) лежат для Gal - Gall при 12 тыс. ат и 3 °С, а для Gall - Galll - при 30 тыс. ат и 45 °С.
  8. Галлий весьма склонен к переохлаждению, и его удавалось удерживать в жидком состоянии до -40 °С. Многократное повторение быстрой кристаллизации переохлажденного расплава может служить методом очистки галлия. В очень чистом состоянии (99,999%) он был получен и путем электролитического рафинирования, а также восстановлением водородом тщательно очищенного GaCl3. Высокая точка кипения и довольно равномерное расширение при нагревании делают галлий ценным материалом для заполнения высокотемпературных термометров. Несмотря на его внешнее сходство с ртутью, взаимная растворимость обоих металлов сравнительно невелика (в интервале от 10 до 95 °С она изменяется от 2,4 до 6,1 атомного процента для Ga в Hg и от 1,3 до 3,8 атомного процента для Hg в Ga). В отличие от ртути жидкий галлий не растворяет щелочные металлы и хорошо смачивает многие неметаллические поверхности. В частности, это относится к стеклу, нанесением на которое галлия могут быть получены зеркала, сильно отражающие свет (однако имеется указание на то, что очень чистый галлий, не содержащий примеси индия, стекло не смачивает). Нанесение галлия на пластмассовую основу используется иногда для быстрого получения радиосхем. Сплав 88% Ga и 12% Sn плавится при 15 °С, а некоторые другие содержащие галлий сплавы (например, 61,5% Bi, 37,2 - Sn и 1,3 - Ga) были предложены для пломбирования зубов. Они не изменяют своего объема с температурой и хорошо держатся. Галлий можно использовать также как уплотнитель для вентилей в вакуумной технике. Однако следует иметь в виду, что при высоких температурах он агрессивен по отношению и к стеклу, и ко многим металлам.
  9. В связи с возможностью расширения производства галлия становится актуальной проблема ассимиляции (т. е. освоения практикой) этого элемента и его соединений, что требует проведения исследовательских работ для изыскания областей их рационального использования. По галлию имеются обзорная статья и монографии.
  10. Сжимаемость индия несколько выше, чем у алюминия (при 10 тыс. ат объем составляет 0,84 исходного). С повышением давления уменьшается его электросопротивление (до 0,5 от исходного при 70 тыс. ат) и растет температура плавления (до 400°С при 65 тыс. ат). Палочки металлического индия при сгибании хрустят, подобно оловянным. На бумаге он оставляет темную черту. Важное применение индия связано с изготовлением германиевых выпрямителей переменного тока (X § 6 доп. 15). Благодаря своей легкоплавкости он может играть роль смазки в подшипниках.
  11. Введение небольшого количества индия в сплавы меди сильно повышает их устойчивость к действию морской воды, а присадка индия к серебру усиливает его блеск и предупреждает потускнение на воздухе. Сплавам для пломбирования зубов добавка индия придает повышенную прочность. Электролитическое покрытие индием других металлов хорошо предохраняет их от коррозии. Сплав индия с оловом (1:1 по массе) хорошо спаивает стекло со стеклом или металлом, а сплав состава 24% In и 76% Ga плавится при 16°С. Плавящийся при 47 °С сплав 18,1% In с 41,0 - Bi, 22,1 - РЬ, 10,6 - Sn и 8,2 - Cd находит медицинское использование при сложных переломах костей (вместо гипса). По химии индия имеется монография
  12. Сжимаемость таллия примерно такова же, как индия, но для него известны две аллотропические модификации (гексагональная и кубическая), точка перехода между которыми лежит при 235 °С. Под высоким давлением возникает еще одна. Тройная точка всех трех форм лежит при 37 тыс. ат и 110°С. Этому давлению соответствует скачкообразное уменьшение примерно в 1,5 раза электросопротивления металла (которое при 70 тыс. ат составляет около 0,3 от обычного). Под давлением в 90 тыс. ат третья форма таллия плавится при 650 °С.
  13. Таллий используется главным образом для изготовления сплавов с оловом и свинцом, обладающих высокой кислотоупорностью. В частности, сплав состава 70% РЬ, 20% Sn и 10% Т1 хорошо выдерживает действие смесей серной, соляной и азотной кислот. По таллию имеется монография.
  14. По отношению к воде галлий и компактный индий устойчивы, а таллий в присутствии воздуха медленно разрушается ею с поверхности. С азотной кислотой галлий реагирует лишь медленно, а таллий весьма энергично. Напротив, серная, и особенно соляная, кислота легко растворяет Ga и In, тогда как Т1 взаимодействует с ними значительно медленнее (вследствие образования на поверхности защитной пленки труднорастворимых солей). Растворы сильных щелочей легко растворяют галлий, лишь медленно действуют на индий и не реагируют с таллием. Галлий заметно растворяется также в NH4OH. Летучие соединения всех трех элементов окрашивают бесцветное пламя в характерные цвета: Ga - в почти незаметный для глаза темно-фиолетовый (Л. = 4171 А), In -в темно-синий (Л, = 4511 А), Т1 - в изумрудно-зеленый (А, = = 5351 А).
  15. Галлий и индий, по-видимому, не ядовиты. Напротив, таллий сильно ядовит, причем по характеру действия похож на РЬ и As. Поражает он нервную систему, пищеварительный тракт и почки. Симптомы острого отравления проявляются не сразу, а через 12-20 часов. При медленно развивающемся хроническом отравлении (в том числе и через кожу) наблюдается прежде всего возбуждение и расстройство сна. В медицине препаратами таллия пользуются для удаления волос (при лишаях и т. п.). Соли таллия нашли применение в светящихся составах как вещества, увеличивающие продолжительность свечения. Они оказались также хорошим средством против мышей и крыс.
  16. В ряду напряжений галлий располагается между Zn и Fe, а индий и таллий - между Fe и Sn. Переходам Ga и In по схеме Э+3 + Зе = Э отвечают нормальные потенциалы: -0,56 и -0,33 в (в кислой среде) или -1,2 и -1,0 в (в щелочной среде). Таллий переводится кислотами в одновалентное состояние (нормальный потен- пиал -0,34 в). Переход Т1+3 + 2е = Т1+ характеризуется нормальным потенциалом + 1,28 в в кислой среде или +0,02 в - в щелочной.
  17. Теплоты образования окислов Э203 галлия и его аналогов уменьшаются по ряду 260 (Ga), 221 (In) и 93 ккал/моль (Т1). При нагревании на воздухе галлий практически окисляется только до GaO. Поэтому Ga203 обычно получают обезвоживанием Ga (ОН) з. .Индий при нагревании на воздухе образует 1п203, а таллий - смесь Т1203 и Т120 с тем большим содержанием высшего окисЛа, чем ниже температура. Нацело до Т1203 таллий может быть окислен действием озона.
  18. Растворимость окислов Э203 в кислотах увеличивается по ряду Ga - In - Tl. В том же ряду уменьшается прочность связи элемента с кислородом: Ga203 плавится при 1795°С без разложения, 1п203 переходит в 1п304 лишь выше 850 °С, а мелко раздробленная Т1203 начинает отщеплять кислород уже около 90 °С. Однако для полного перевода Т1203 в Т120 необходимы гораздо более высокие температуры. Под избыточным давлением кислорода 1п203 плавится при 1910 °С, а Т1203 - при 716 °С.
  19. Теплоты гидратации окислов по схеме Э203 + ЗН20 = 2Э(ОН)3 составляют +22 ккал (Ga), +1 (In) и -45 (Т1). В соответствии с этим легкость отщепления гидроокисями воды возрастает от Ga к Т1: если Ga(OH)3 полностью обезвоживается лишь при прокаливании, то Т1(ОН)3 переходит в Т1203 даже при стоянии под жидкостью, из которой она была выделена.
  20. При нейтрализации кислых растворов солей галлия его гидроокись осаждается приблизительно в интервале pH = 3-4. Свежеосажденная Ga(OH)3 хорошо растворима в крепких растворах аммиака, но по мере ее старения растворимость все более снижается. Ее изоэлектрическая точка лежит при pH = 6,8, а ПР = 2 10~37. Для 1п(ОН)3 было найдено ПР = 1 10-31, а для Т1(ОН)3- 1 10~45.
  21. Для вторых и третьих констант диссоциации Ga(OH)3 по кислотному и основному типам были определены следующие значения:

H3Ga03 /С2 = 5-10_И К3 = 2-10-12
Ga(OH)3 К2“2. Ю-П /Сз = 4 -10 12
Таким образом, гидроокись галлия представляет собой случай электролита, очень близкого к идеальной амфотерности.

  1. Различие кислотных свойств гидроокисей галлия и его аналогов отчетливо проявляется при их взаимодействии с растворами сильных щелочей (NaOH, КОН). Гидроокись галлия легко растворяется с образованием галлатов типа M, устойчивых и в растворе, и в твердом состоянии. При нагревании они легко теряют воду (соль Na - при 120, соль К - при 137 °С) и переходят в соответствующие безводные соли типа MGa02. Для получаемых из растворов галлатов двухвалентных металлов (Са, Sr) характерен другой тип - M3 ■ 2Н20, которые тоже почти нерастворимы. Водой они полностью гидролизуются.
    Гидроокись таллия легко пептизируется сильными щелочами (с образованием отри-цательного золя), но нерастворима в них и таллатов не дает. Сухим путем (сплавлением окислов с соответствующими карбонатами) производные типа МЭ02 были получены для всех трех элементов подгруппы галлия. Однако в случае таллия они оказались смесями окислов.

    1. Эффективные радиусы ионов Ga3+, In3* и Т13* равны соответственно 0,62, 0,92 и 1,05 А. В водной среде они непосредственно окружены, по-видимому, шестью молекулами воды. Такие гидратированные ионы несколько диссоциированы по схеме Э(ОН2)а Г * Э (ОН2)5 ОН + Н, причем их константы диссоциации оцениваются в 3 ■ 10-3°(Ga) и 2 10-4 (In).
    2. Галоидные соли Ga3+, In3* и Т13*’ в общем похожи на соответствующие соли А13*. Кроме фторидов, они сравнительно легкоплавки и хорошо растворимы не только в воде, но и в ряде органических растворителей. Окрашены из них лишь желтые Gal3

    Галлий

    ГА́ЛЛИЙ -я; м. [от лат. Gallia - Франция] Химический элемент (Ga), мягкий легкоплавкий металл серебристо-белого цвета (применяется в производстве полупроводников).

    Га́ллий

    (лат. Gallium), химический элемент III группы периодической системы. Название от Gallia - латинское название Франции. Серебристо-белый легкоплавкий (t пл 29,77ºC) металл; плотность (г/см 3) твердого металла 5,904, жидкого 6,095; t кип 2205ºC. На воздухе химически стоек. В природе рассеян, встречается вместе с Al. Применяют в основном (на 97%) в производстве полупроводниковых материалов (GaAs, GaSb, GaP, GaN).

    ГАЛЛИЙ

    ГА́ЛЛИЙ (лат. Gallium, от Gallia - латинского названия Франции), Ga (читается «галлий»), химический элемент с атомным номером 31, атомная масса 69,723.
    Природный галлий состоит из двух изотопов 69 Ga (61,2% по массе) и 71 Ga (38,8%). Конфигурация внешнего электронного слоя 4s 2 p 1 . Степень окисления +3 , +1 (валентности I, III).
    Расположен в группе IIIА периодической системы элементов, в 4-м периоде.
    Радиус атома 0,1245 нм, радиус иона Ga 3+ 0,062 нм. Энергии последовательной ионизации 5,998, 20,514, 30,71, 64,2 и 89,8 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,6.
    История открытия
    Впервые существование этого элемента предсказано Д. И. Менделеевым (см. МЕНДЕЛЕЕВ Дмитрий Иванович) в 1871 на основании открытого им периодического закона. Он назвал его экаалюминий. В 1875 П. Э. Лекок де Буабодран (см. ЛЕКОК ДЕ БУАБОДРАН Поль Эмиль) выделил галлий из цинковых руд.
    Де Буабодран определил плотность галлия - 4,7 г/см 3 , что не соответствовало предсказанному Д. И. Менделеевым значению 5,9 г/см 3 . Уточненное значение плотности галлия (5,904 г/см 3) совпало с предсказанием Менделеева.
    Нахождение в природе
    Содержание в земной коре 1,8·10 –3 % по массе. Галлий относится к рассеянным элементам. В природе встречается в виде очень редких минералов: зенгеита Ga(OH) 3 , галлита CuGaS 2 и других. Является спутником алюминия (см. АЛЮМИНИЙ) , цинка (см. ЦИНК (химический элемент)) , германия (см. ГЕРМАНИЙ) , железа (см. ЖЕЛЕЗО) ; содержится в сфалеритах (см. СФАЛЕРИТ) , нефелине (см. НЕФЕЛИН) , натролите, бокситах, (см. БОКСИТЫ) германите, в углях и железных рудах некоторых месторождений.
    Получение
    Основной источник галлия - алюминатные растворы, получаемые при переработке глинозема. После удаления большей части Al и многократного концентрирования образуется щелочной раствор, содержащий Ga и Al. Галлий выделяют электролизом этого раствора.
    Физические и химические свойства
    Галлий - легкоплавкий светло-серый металл с синеватым оттенком. Расплав Ga может находиться в жидком состоянии при температуре ниже температуры плавления (29,75 °C). Температура кипения 2200 °C, это объясняется тем, что в жидком галлии плотная упаковка атомов с координационным числом 12. Для ее разрушения надо затратить много энергии.
    Кристаллическая решетка устойчивой a-модификации образована двухатомными молекулами Ga 2 , связанными между собой ван-дер-ваальсовыми силами (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ) , длина связи 0,244 нм.
    Стандартный электродный потенциал пары Ga 3+ /Ga равен –0,53В, Ga находится в электрохимическом ряду до водорода (см. ВОДОРОД) .
    По химическим свойствам галлий сходен с алюминием.
    На воздухе Ga покрывается оксидной пленкой, предохраняющей от дальнейшего окисления. С мышьяком (см. МЫШЬЯК) , фосфором (см. ФОСФОР) , сурьмой (см. СУРЬМА) образует арсенид, фосфид и антимонид галлия, с серой (см. СЕРА) , селеном (см. СЕЛЕН) , теллуром (см. ТЕЛЛУР) - халькогениды. При нагревании Ga реагирует с кислородом (см. КИСЛОРОД) . С хлором (см. ХЛОР) и бромом (см. БРОМ) галлий взаимодействует при комнатной температуре, с иодом (см. ИОД) - при нагревании. Галогениды галлия, образуют димеры Ge 2 X 6 .
    Галлий образует полимерные гидриды:
    4LiH + GaCl 3 = Li + 3LiCl.
    Устойчивость ионов падает в ряду BH 4 – - AlH 4 – - GaH 4 – . Ион BH 4 – устойчив в водном растворе, AlH 4 – и GaH 4 – быстро гидролизуются:
    GaH 4 – + 4H 2 O = Ga(OH) 3 + OH – + 4H 2
    При нагревании под давлением Ga реагирует с водой:
    2Ga + 4H 2 O = 2GaOOH + 3H 2
    С минеральными кислотами Ga медленно реагирует с выделением водорода:
    2Ga + 6HCl = 2GaCl 3 + 3H 2
    Галлий растворяется в щелочах с образованием гидроксогаллатов:
    2Ga + 6H 2 O + 2NaOH = 2Na + 3H 2
    Оксид и гидроксид галлия проявляют амфотерные свойства, хотя основные свойства у них по сравнению с Al усилены:
    Ga 2 O 3 + 6HCl = 2GaCl 2 ,
    Ga 2 O 3 + 2NaOH + 3H 2 O = 2Na
    Ga 2 O 3 + Na 2 CO 3 = 2NaGaO 2 + CO 2
    При подщелачивании раствора какой-либо соли галлия выделяется гидроксид галлия переменного состава Ge 2 O 3 ·x H 2 O:
    Ga(NO 3) 2 + 3NaOH = Ga(OH) 3 Ї + 3NaNO 3
    При растворении Ga(OH) 3 и Ga 2 O 3 в кислотах образуются аквакомплексы 3+ , поэтому из водных растворов соли галлия выделяются в виде кристаллогидратов, например, хлорид галлия GaCl 3 ·6H 2 O, галлийкалиевые квасцы KGa(SO 4) 2 ·12H 2 O. Аквакомплексы галлия в растворах бесцветны.
    Применение
    Около 97% получаемого промышленностью галлия используется для получения соединений с полупроводниковыми свойствами, например, арсенида галлия GaAs. Металлический галлий применяют в радиоэлектронике для «холодной пайки» керамических и металлических деталей, для легирования Ge и Si, получения оптических зеркал. Ga может заменять Hg в выпрямителях электрического тока. Эвтектический сплав галлия с индием используют в радиационных контурах реакторов.
    Особенности обращения
    Галлий - малотоксичный элемент. Из-за низкой температуры плавления слитки Ga рекомендуется транспортировать в пакетах из полиэтилена, который плохо смачивается жидким галлием.


    Энциклопедический словарь . 2009 .

    Синонимы :

    Смотреть что такое "Галлий" в других словарях:

      Металл, простое тело, существование которого предвидел Менделеев и который был открыт Лекок де Буободраном. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГАЛЛИЙ неразложимый минерал, сине белого цвета; твердый,… … Словарь иностранных слов русского языка

      - (Gallium), Ga, химическая элемент III группы периодической системы, атомный номер 31, атомная масса 69,72; металл. Галлий открыт французским химиком П. Лекоком де Буабодраном в 1875 … Современная энциклопедия

      Ga (лат. Gallium * a. gallium; н. Gallium; ф. gallium; и. galio), хим. элемент III группы периодич. системы Mенделеева, ат. н. 31, ат. м. 69,73. Cостоит из двух стабильных изотопов 69Ga (61,2%) и 71Ga (38,8%). Предсказан в 1870 Д. И.… … Геологическая энциклопедия

      галлий - я, м. gallium m. От лат. названия Франции, где был открыт в 1875 г. химиком Лекоком де Буадбодраном. ЭС. Химический элемент, мягкий лекоплавкий серебристо белый металл; применяется вместо ртути для изготовления манометров и высокотемпературных… … Исторический словарь галлицизмов русского языка

      Галлий - (Gallium), Ga, химическая элемент III группы периодической системы, атомный номер 31, атомная масса 69,72; металл. Галлий открыт французским химиком П. Лекоком де Буабодраном в 1875. … Иллюстрированный энциклопедический словарь

    Химический элемент галий практически не встречается в природе в свободном виде. Он существует в примесях минералов, от которых его достаточно сложно отделить. Галий считается редким веществом, некоторые его свойства не изучены полностью. Тем не менее он применяется в медицине и электронике. Что это за элемент? Какими свойствами он обладает?

    Галий - металл или неметалл?

    В элемент относится к тринадцатой группе четвертого периода. Он назван в честь исторической области - Галлии, частью которой была Франция - родина первооткрывателя элемента. Для его обозначения используют символ Ga.

    Галий входит в группу лёгких металлов вместе с алюминием, индием, германием, оловом, сурьмой и другими элементами. Как простое вещество он является хрупким и мягким, обладает серебристо-белым цветом с легким голубоватым оттенком.

    История открытия

    Менделеев "предсказал" галий, оставив для него место в третьей группе периодической таблицы (по устаревшей системе). Он приблизительно назвал его атомную массу и даже предугадал, что элемент будет открыт спектроскопически.

    Уже через несколько лет металл был обнаружен французом Полем Эмилем Лекоком. В августе 1875 года учёный изучал спектр из месторождения в Пиренеях и заметил новые фиолетовые линии. Элемент был назван галием. Его содержание в минерале было крайне маленьким и Лекоку удалось выделить всего 0,1 грамма. Открытие металла стало одним из подтверждений правильности предсказания Менделеева.

    Физические свойства

    Металл галий очень пластичный и легкоплавкий. При низких температурах он пребывает в твёрдом состоянии. Для превращения его в жидкость достаточно температуры 29,76 градусов Цельсия или 302,93 по Кальвину. Расплавить его можно держа в руке или опустив в горячую жидкость. Слишком высокие температуры делают его очень агрессивным: при 500 градусах по Цельсию и выше он способен разъедать другие металлы.

    Кристаллическая решетка галия образована двухатомными молекулами. Они очень устойчивы, но между собой связаны слабо. Чтобы нарушить их связь, необходимо совсем небольшое количество энергии, поэтому галий без труда становится жидким. По легкоплавкости он в пять раз превосходит индий.

    В жидком состоянии металл более плотный и тяжёлый, чем в твёрдом. Кроме того, он лучше проводит электричество. При нормальных условиях его плотность составляет 5,91 г/см³. Закипает металл при -2230 градусах по Цельсию. При затвердевании он расширяется примерно 3,2%.

    Химические свойства

    По многим химическим свойствам галий похож на алюминий, но проявляет меньшую активность и реакции с ним проходят медленнее. Он не вступает в реакцию с воздухом, моментально образуя оксидную плёнку, которая предотвращает его окисление. Он не реагирует на водород, бор, кремний, азот и углерод.

    Металл отлично взаимодействует практически с любыми галогенами. С йодом вступает в реакцию только при нагревании, с хлором и бромом реагирует даже при комнатной температуре. В горячей воде он начинает вытеснять водород, с минеральными кислотами образует соли и тоже высвобождает водород.

    С другими металлами галий способен создавать амальгамы. Если жидкий галий капнуть на твёрдый кусок алюминия, он начнёт проникать в него. Вторгаясь в кристаллическую решетку алюминия, жидкое вещество сделает его хрупким. Уже через несколько дней твёрдый металлический брусок можно будет крошить руками, не прилагая особых усилий.

    Применение

    В медицине металл галий используют для борьбы с опухолями и гиперкальциемией, он также подходит для радиоизотопной диагностики рака костей. Однако препараты, содержащие вещество, могут вызывать побочные эффекты, например, тошноту и рвоту.

    Применение металл галий находит и в сверхчастотной электронике. Его используют для изготовления полупроводников и светодиодов, в качестве пьезоматериала. Из сплава галия со скандием или никелем получаются металлические клеи. В сплаве с плутонием он играет роль стабилизатора и применяется в ядерных бомбах.

    Стёкла с этим металлом обладают высоким коэффициентом преломления лучей, а его оксид Ga 2 O 3 позволяет стеклу пропускать инфракрасные лучи. Чистый галий может использоваться для изготовления простых зеркал, так как хорошо отражает свет.

    Распространённость и месторождения галия

    Где взять галий? Металл легко можно заказать в интернете. Его стоимость колеблется от 115 до 360 долларов за килограмм. Металл считается редким, он очень рассеян в земной коре и практически не образует собственных минералов. С 1956 году их было найдено все три.

    Зачастую галий находят в составе цинковых, железных, Его примеси обнаруживают в каменном угле, берилле, гранате, магнетите, турмалине, полевом шпате, хлоритах и других минералах. В среднем его содержание в природе составляет около 19 г/т.

    Больше всего галия содержится в веществах, которые близки к нему по составу. Из-за этого его сложно и дорого из них извлекать. Собственный минерал металла называется галлит с формулой CuGaS 2 . Он содержит также медь и серу.

    Влияние на человека

    О биологической роли металла и его воздействии на организм человека известно мало. В периодической таблице он находится рядом с элементами, которые нам жизненно необходимы (алюминий, железо, цинк, хром). Существует мнение, что в качестве ультрамикроэлемента галий входит в состав крови, ускоряя её ток и предотвращая образование тромбов.

    Так или иначе, небольшое количество вещества содержится в организме человека (10 -6 - 10 -5 %). Галий поступает в него вместе с водой и сельскохозяйственными продуктами питания. Он задерживается в костной ткани и печени.

    Металл галий считается малотоксичным или условно-токсичным. При контакте с кожей мелкие частички остаются на ней. Это выглядит как серое грязное пятно, которое легко убирается водой. Вещество не оставляет ожогов, но в отдельных случаях может вызвать дерматит. Известно, что высокое содержание галия в организме вызывает нарушения в печени, почках и нервной системе, но для этого нужно очень большое количество металла.