О надежности и безопасности промышленных паропроводов, спроектированных для транспортировки перегретого пара, но эксплуатирующихся в условиях транспортировки влажного пара. Температурные потери при выпаривании

Схема сети показана на рис. 8

Рис. 8. Расчетная схема паропровода: I–IV – абоненты; 1–4 – узловые точки

Формулы, используемые для определения гидравлических потерь, как для жидкости, так и для пара являются одинаковыми.

Отличительная особенность паропровода – учет изменения плотности пара.

1. Определяем ориентировочное значение удельных потерь на трение на участках от источника тепла до наиболее удалённого потребителя IV, Па/м:

.

Здесь – суммарная длина участков 1 – 2 – 3 – IV; α –доля потерь давления в местных сопротивлениях, принимаемая равной 0,7 как для магистрали с П–образными компенсаторами со сварными отводами и предполагаемыми диаметрами (табл. 16).

Таблица 16

Коэффициент α для определения эквивалентных длин для паропроводов

Типы компенсаторов Условный проход трубы d у ,мм Значение коэффициента α
Для паропроводов Для водяных тепловых сетей и конденсатопроводов
Транзитные магистрали
Сальниковые П- ≤1000 0,2 0,2
образные с отводами:
гнутыми ≤300 0,5 0,3
200–350 0,7 0,5
сварными 400–500 600–1000 0,9 1,2 0,7
Разветвленные тепловые сети

Окончание табл. 16



2. Определяем плотность пара:

3. По номограммам находим диаметр паропровода (прил. 6).

4. Действительные потери давления, Па/м:

(117)

5. Действительная скорость пара:

Сверяем с табл. 17.

Таблица 17

Максимальная скорость движения пара в паропроводах

7. Суммарная эквивалентная длина на участках:

(119)

где – сумма коэффициентов местных сопротивлений (см. табл. 8).

8. Приведенная длина участка:

9. Потери давления на трение и в местных сопротивлениях на участке:

(121)

10. Давление пара в конце участка:

(122)

Данные расчетов свести в табл. 18 по схеме.


Таблица 18

Гидравлический расчет паровой сети

№ участка Расход пара D Размеры труб, мм Длина участка, м Скорость пара ωТ, м/с Удельные потери давления на трение Па/м Предполагаемая средняя плотность ρ ср, кг/м 3 Скорость движения пара м/с Потери давления Конец участка Средняя плотность пара ρср, кг/м3 Суммарные потери давления от ТЭЦ,МПа
Т/ч Кг/с Условный проход d у Наружный диаметр * толщина стенки; dn* S по плану l Эквивалентная местным сопротивлениям l Э приведенная l пр =l+ l Э давление р Н, МПа плотность ρ Н, кг/м 3 удельные Па/м на участке Па давление рК, МПа плотность ρК, кг/м 3
при ρ= 2,45 кг/ м 3 при ρ ср

Расчет паропровода

α – 0,3 ...0,6. (123)

По формуле находим диаметр трубы:

(124)

Задаемся скоростью пара в трубе. Из уравнения для расхода пара – σ=ωrF находим диаметр трубы по ГОСТу подбирается труба с ближайшим внутренним диаметром. Уточняются удельные линейные потери и виды местных сопротивлений, рассчитываются эквивалентные длины. Определяется давление на конце трубопровода. Рассчитываются потери тепла на расчетном участке по нормируемым потерям тепла :

(125)

где – потери тепла на единицу длины при заданной разности температур пара и окружающей среды с учетом потерь тепла на опорах, задвижках и т.п.

Если определено без учета потерь, тепла на опорах, задвижках и т. п., то

где t ср – средняя температура пара на участке, 0 С, t 0 – температура окружающей среды, зависящая от способа прокладки, 0 С. При наземной прокладке t 0 = = t Н0 , при подземной бесканальной прокладке t 0 = t гр (температура грунта на глубине укладки). При прокладке в проходных и полупроходных каналах t 0 = =40–50°С.

При прокладке в переходных каналах t 0 = 5°С. По найденным потерям тепла определяют изменение энтальпии пара на участке и значение энтальпии пара в конце участка:

По найденным значениям давления и энтальпии пара в начале и конце участка определяется новое значение средней плотности пара (форм. 128).

Если новое значение плотности отличается от ранее заданного более чем на 3 %, то проверочный расчет повторяется с уточнением одновременно и R Л :

(128)

Тепловой расчет паропровода

Для уменьшения потерь теплоты в окружающую среду и обеспечения безопасности труда персонала все трубопроводы, имеющие температуру теплоносителя выше 50 ?С внутри помещений и выше 60 ?С вне помещений, должны иметь тепловую изоляцию. Температура поверхности изоляции должна быть не выше 45 ?С внутри помещений и не более 60 ?С на открытом воздухе.

Потерю теплоты, Вт/м, через изоляцию на 1 метр длины трубопровода определяют по формуле:

где - температура среды в трубопроводе, ?С;

Температура окружающего воздуха, ?С;

Суммарное термическое сопротивление, м??С/Вт.

где,- термическое сопротивление внутренней и наружной поверхностей изолированного трубопровода, м??С/Вт;

Термическое сопротивление стенки трубы и слоя изоляции, м??С/Вт;

где - внутренний диаметр трубы, м;

Коэффициент теплоотдачи от теплоносителя к стенке трубы, Вт/м 2 ??С.

где - наружный диаметр трубы, м;

Коэффициент теплоотдачи от стенки трубы к изоляции, Вт/м 2 ??С.

где - теплопроводность стенки трубы, Вт/м??С;

где - теплопроводность тепловой изоляции, Вт/м??С;

Диаметр тепловой изоляции, м.

Величина, связана уравнением теплоотдачи с заданной температурой наружной поверхности изоляции:

где - температура наружной поверхности изоляции.

Необходимое значение диаметра тепловой изоляции определяется из совместного решения уравнений (18) и (24).

Тепловой расчет наружного участка паропровода

коэффициент теплоотдачи от пара к стенке - 10 000 Вт/м 2 ??С;

температура пара - 280 ?С;

средняя температура наружного воздуха зимнего периода - -8 ?С

температура поверхности изоляции - 30 0 ?С.

м. Тогда толщина изоляции 77 мм.

Для эффективной работы тепловой изоляции необходимо, чтобы соблюдалось условие:

Условие (26) соблюдается.

Тогда термическое сопротивление паропровода согласно формуле (25) будет равно:

Определяем падение температуры пара по длине наружного участка.

Расход пара кг/сек.

Длина паропровода м.

Теплоемкость пара кДж/кг??С.

Тепловой расчет внутреннего участка паропровода

Принимаем следующие исходные данные:

внутренний диаметр трубы - 351 мм;

наружный диаметр трубы - 377 мм;

коэффициент теплоотдачи от пара к стенке - 10000 Вт/м 2 ??С;

коэффициент теплоотдачи от наружной поверхности изоляции к окружающему воздуху - 20 Вт/м 2 ??С;

теплопроводность стенки стальной трубы - 58 Вт/м??С.

в качестве изоляционного материала выбираем минеральную вату с коэффициентом теплопроводности - 0,08 Вт/м 2 ??С

температура пара - 280 ?С;

средняя температура воздуха в помещении котельной - 30 ?С;

температура поверхности изоляции - 45 ?С.

Определяем необходимую толщину тепловой изоляции.

По формулам (19)-(23) определяем термическое сопротивление изолированного трубопровода:

Суммарное термическое сопротивление трубопровода:

Для нахождения диаметра тепловой изоляции решаем совместно уравнения (18) и (24):

м. Тогда толщина изоляции 153 мм.

Термическое сопротивление паропровода согласно формуле (25) будет равно:

Определяем падение температуры пара по длине внутреннего участка.

Коэффициент местных потерь теплоты.

Расход пара кг/сек.

Длина паропровода м.

Теплоемкость пара кДж/кг??С.

Температура в конце участка будет равна:

Падение температуры незначительное?С.

Таким образом, гарантируется температура перегретого пара у потребителя - 279 ?С.

Из формулы (6.2) видно, что потери давления в трубопроводах прямо пропорциональны плотности теплоносителя. Диапазон колебаний температуры в водяных тепловых сетях . В этих условиях плотность воды составляет .

Плотность же насыщенного пара при составляет 2,45 т.е. примерно в 400 раз меньше.

Поэтому допустимая скорость движения пара в трубопроводах принимается значительно большей, чем в водяных тепловых сетях (примерно в 10-20 раз).

Отличительная особенность гидравлического расчета паропровода заключается в необходимости учета при определении гидравлических потерь изменения плотности пара.

При расчете паропроводов плотность пара определяют в зависимости от давления по таблицам. Так как давление пара в свою очередь зависит от гидравлических потерь, расчет паропроводов ведут методом последовательных приближений. Сначала задаются потерями давления на участке, по среднему давлению определяют плотность пара и далее рассчитывают действительные потери давления. Если ошибка оказывается недопустимой, производят пересчет.

При расчете паровых сетей заданными являются расходы пара, его начальное давление и необходимое давление перед установками, использующими пар.

Удельную располагаемую потерю давления в магистрали и в отдельных расчетных участках, , определяют по располагаемому перепаду давления:

, (6.13)

где длина основной расчетной магистрали, м ; величину для разветвленных паровых сетей принимают 0,5.

Диаметры паропроводов подбираются по номограмме (рис.6.3) при эквивалентной шероховатости труб мм и плотности пара кг/м 3 . Действительные значения R Д и скорости пара подсчитываются по средней действительной плотности пара:

где и значения R и , найденные по рис. 6.3. При этом проверяется, чтобы действительная скорость пара не превышала максимально допустимых значений: для насыщенного пара м/с ; для перегретого м/с (значения в числителе принимаются для паропроводов диаметром до 200 мм , в знаменателе - больше 200 мм , для отводов эти значения можно увеличивать на 30 %).



Так как значение в начале расчета неизвестно, то им задаются с последующим уточнением по формуле:

, (6.16)

где , удельный вес пара в начале и конце участка.

Контрольные вопросы

1. Каковы задачи гидравлического расчета трубопроводов тепловой сети?

2. Что такое относительная эквивалентная шероховатость стенки трубопровода?

3. Приведите основные расчетные зависимости для гидравлического расчета трубопроводов водяной тепловой сети. Что такое удельная линейная потеря давления в трубопроводе и какова ее размерность?

4. Приведите исходные данные для гидравлического расчета разветвленной водяной тепловой сети. Какова последовательность отдельных расчетных операций?

5. Как производится гидравлический расчет паровой сети теплоснабжения?


В процессе выпаривания растворов возникают температурные потери, общая величина которых складывается из физико-химической (концентрационной) температурной депрессии гидростатической депрессии и гидравлической депрессии

Физико-химическая температурная депрессия равна разности между температурой кипения раствора и температурой кипения чистого растворителя (температурой вторичного пара) при данном давлении. Раствор кипит при более высокой температуре, чем чистый растворитель. Для раствора поваренной соли NaCI по мере повышения концентрации температура кипения повышается до тех пор, пока раствор не достигнет предельной концентрации 26 %. При такой концентрации и атмосферном давлении раствор закипит при температуре 107,5 о С, а выделяющиеся пары растворителя будут иметь температуру 100 о С, т.е. температуру кипения чистой воды.

Таким образом, при кипении раствора в выпарном аппарате температура выделяющегося пара всегда меньше температуры кипения раствора. Эту разность температур и называют физико-химической температурной депрессией или просто температурной депрессией и обозначают :

(1.6)

где температура кипения раствора; t в.п – температура выделяющихся паров растворителя (воды).

Температурная депрессия увеличивается с повышением концентрации раствора и различна для разных растворов. В справочниках обычно приводятся значения температурной депрессии для кипящих растворов при нормальном атмосферном давлении. Для расчета температурной депрессии растворов при давлениях, отличных от нормального, при наличии данных из таблиц для нормальной депрессии пользуются формулой И.А. Тищенко

(1.7)

где - температурная депрессия при данном давлении; - температурная депрессия при нормальном давлении; Т – абсолютная температура кипения воды при данном давлении; r – теплота парообразования воды при данном давлении.

Формула (1.7) дает удовлетворительные результаты только для водных растворов, обладающих малой температурной депрессией.

Значения нормальной температурной депрессии для некоторых растворов в зависимости от их концентрации приведены на рис. 1.4.

При нахождении температурной депрессии по формуле (1.6) необходимо определять температуру кипения раствора при различных давлениях. Для этого можно использовать эмпирический закон Бабо, по которому отношение давления насыщения пара р р при той же температуре есть величина постоянная, для данной концентрации не зависящая от температуры кипения, т.е.

. (1.8)


Рис. 1.4. Изменение температурной депрессии в зависимости от концентрации раствора при кипении:



1 - KOH; 2 - KCI; 3 - KJ; 4 – KNO 3 ; 5 – K 2 CO 3 ; 6 – MgCI 2 ; 7 – MgSO 4 ; 8 - NaOH; 9 – NaNO 3 ; 10 - NaCI; 11 – Na 2 SO 4 ; 12 – NH 4 NO 3 ; 13 – C 5 H 10 O 5 ; 14 – CaCI 2 ; 15 – K 2 Cr 2 O 7

Таким образом, если температура кипения раствора данной концентрации при атмосферном давлении известна, то вычислить температуру кипения его при любом другом давлении просто. Следует иметь в виду, что закон Бабо дает достаточно точные результаты только для разбавленных (слабо концентрированных) растворов.

На рис. 1.5. представлена схема и температурный график выпарной установки с учетом всех видов депрессий.

На оси абсцисс графика представлены температуры, а на оси ординат показаны положения температурных точек в установке. В соответствии с изложенным выше точка 4 соответствует средней температуре кипения раствора, а разность между точками 4 и 7 характеризует все виды депрессий. Следовательно, разность между температурами греющего пара (точка 2) и кипения раствора (точка 4) является полезной разностью температур.



Рис. 1.5. Схема аппарата и температурный график выпарной установки:

1-2-конденсация греющего пара (без учета охлаждения конденсата); 3-5- изменение температуры кипения под действием гидростатического столба жидкости; 4 – температура кипения раствора; 5-6 концентрационная температурная депрессия; 6-7-гидродинамическая температурная депрессия

При выпаривании циркулирующих растворов температурную депрессию следует вычислять по конечной концентрации раствора, а при отсутствии циркуляции, т.е. при однократном прохождении раствора, по средней его концентрации в корпусе.

Повышение температуры кипения растворов вследствие гидростатического давления. В выпарном аппарате давление на жидкость в верхних и нижних слоях неодинаково, следовательно, температура кипения раствора по всей высоте аппарата также различна. Пузырьки пара, находящиеся в нижних слоях жидкости, и, следовательно, должны иметь большее давление, чем на поверхности. Этим объясняется более высокая температура кипения жидкости в нижних слоях.

Гидростатическое давление в среднем слое будет равно, Па,

(1.9)

где плотность раствора в п -ном корпусе, кг/м 3 ; высота столба жидкости в аппарате, м; g - ускорение силы тяжести, м/с 2 .

Если прибавить это давление к давлению в паровом пространстве аппарата, то получим общее давление на средней глубине жидкости , и по таблицам насыщенного водяного пара находиться температура кипения воды, соответствующая этому давлению. Вычитая из найденной температуры температуру кипения воды при данном давлении в паровом пространстве, получим температурную потерю вследствие гидростатического давления. В дальнейшем эту потерю по отдельным корпусам будем обозначать через

Практически гидростатическое давление оказывает меньшее влияние на температурные потери, чем это следует из формулы (1.9), так как при кипении образуется смесь пара с жидкостью, и поэтому значительно уменьшается плотность столба жидкости в трубах.

Гидростатический эффект стремятся свести к минимуму, конструируя выпарные аппараты таким образом, чтобы процесс выпаривания протекал в весьма тонком слое. Можно считать, что в аппаратах пленочного типа влияние гидростатического давления практически полностью устранено .

Охлаждение вторичного пара в паропроводах между корпусами . Вторичный пар, следуя из парового пространства предыдущего корпуса в нагревательную камеру следующего корпуса, должен преодолеть некоторое сопротивление; это вызывает уменьшение его давления, приводящее к понижению температуры пара. При этом чем больше скорость пара в паропроводе и длиннее паропровод, тем большим будет снижение температуры. На основании опытных данных падение температуры в паропроводах между всеми корпусами без большой ошибки принимают обычно одинаковым и равным 0,5-1,5 о С для каждого аппарата .

1.3. Типовые конструкции выпарных аппаратов

В литературе описано большое количество конструкций аппаратов, применяемых как ранее, так и сейчас в химической, сахарной и других отраслях промышленности. Строгой и общепринятой классификации выпарных аппаратов нет, однако их можно классифицировать по ряду признаков:

По расположению поверхности нагрева – на горизонтальные, вертикальные и, реже, наклонные;

По роду теплоносителя – с паровым обогревом, газовым обогревом, обогревом высокотемпературными теплоносителями (масло, даутерм, вода под высоким давлением), с электрообогревом. Чаще всего применяют паровой обогрев, поэтому в дальнейшем внимание будет уделено аппаратам с паровым обогревом;

По способу подвода теплоносителя – с подачей теплоносителя внутрь трубок (кипение в большом объеме) или в межтрубное пространство (кипение внутри кипятильных труб);

По режиму циркуляции – с естественной и искусственной (принудительной) циркуляцией;

По кратности циркуляции – с однократной и многократной циркуляцией;

По типу поверхности нагрева – с паровой рубашкой, змеевиковые и, наиболее распространенный, с трубчатой поверхностью различной конфигурации.

К конструкции выпарных аппаратов предъявляются следующие требования:

Простота, компактность, надежность, технологичность изготовления, монтажа и ремонта;

Стандартизация узлов и деталей;

Соблюдение требуемого режима (температура, давление, время пребывания раствора в аппарате), получение полупродукта или продукта необходимого качества и требуемой концентрации, устойчивость в работе, по возможности более длительная работа аппарата между чистками при минимальных отложениях осадков на теплообменной поверхности, удобство обслуживания, регулирования и контроля за работой;

Высокая интенсивность теплопередачи (высокое значение К ), малый вес и невысокая стоимость одного квадратного метра поверхности нагрева.

Более существенным признаком классификации выпарных аппаратов является характер движения растворов в аппарате и кратность его циркуляции. Можно выделить: аппараты с естественной циркуляцией раствора; с принудительной циркуляцией и пленочные. Особое положение занимают контактные выпарные аппараты с погружными горелками.

1.3.1. Циркуляция растворов в выпарных аппаратах

Циркуляция растворов в выпарных аппаратах улучшает теплообмен и уменьшает отложения солей на стенках труб. Образующиеся в растворе кристаллы выделяются из пульпы в специальных солеотделителях, фильтрах и центрифугах. Для устранения инкрустации поверхности нагрева скорость раствора на входе в греющие трубы должна быть не менее 2,5 м/с.

В аппаратах может быть применена однократная и многократная циркуляция раствора, причем многократная циркуляция может быть естественной и принудительной.

Кратностью циркуляции К называют отношение количества раствора G , кг/ч, проциркулировавшего через сечение растворного пространства выпарного аппарата, к количеству выпаренной влаги W , кг/ч:

К=G/W . (1.10)

Естественная циркуляция (рис. 1.6) возникает из-за разности плотностей кипящего раствора в опускных каналах и кипящего раствора в подъемных трубах . Движущий напор р дв в циркуляционном контуре длиной L можно выразить следующей формулой:

р дв =L (). (1.11)

При установившемся режиме циркуляции этот напор уравновешен суммой гидравлических сопротивлений в опускном и подъемном каналах контура:

р дв = (1.12)

Чем меньше , т.е. чем больше доля пара в парожидкостной смеси, тем больше движущий напор и тем выше скорость циркуляции. С увеличением скорости раствора растетет гидравлическое сопротивление тракта. Скорость циркуляции раствора может быть найдена при совместном решении уравнений (1.11) и (1.12), если движущий напор и сопротивления в контуре будут выражены в виде функции скорости циркуляции. Расчет производится с учетом следующих допущений:

1. Скорость пара относительно раствора равна нулю.

2. Коэффициент теплопередачи и температурный напор между греющим паром и раствором по высоте труб приняты постоянными.

3. Введено понятие приведенной скорости - скорости одной из фаз, отнесенной к полному сечению канала. Так, приведенная скорость пара, образующегося на выходе из кипятильной трубы, выражается равенством

=W

где W =- паропроизводительность кипятильной трубы, кг/с; - плотность пара, кг/м 3 ; r – теплота парообразования вторичного пара, кДж/кг; d вн и L 1 – внутренний диаметр и длина кипятильной трубы, м; К – коэффициент теплопередачи, Вт/(м 2 · К); - температурный напор между греющим паром и кипящим раствором, К.

Количественная оценка дисбаланса расходов пара и теплоты в системах пароснабжения

К. т. н. С.Д. Содномова,

доцент кафедры "Теплогазоснабжение и вентиляция",

Восточно-сибирский государственный технологический университет,

г. Улан-Удэ, Республика Бурятия

В настоящее время баланс отпуска и потребления теплоты в системах пароснабжения определяется по показаниям приборов учета на источнике теплоты и у потребителей. Разницу показаний этих приборов относят к фактическим потерям теплоты и учитывают при установлении тарифов на тепловую энергию в виде пара.

Раньше при работе паропровода близкой к проектной нагрузке эти потери составляли 1015%, и ни у кого при этом не возникало вопросов. В последнее десятилетие в связи со спадом промышленного производства произошло изменение графика работы и сокращение потребления пара. При этом дисбаланс между потреблением и отпуском теплоты резко увеличился и стал составлять 50-70% .

В этих условиях возникли проблемы, прежде всего от потребителей, которые считали необоснованным включать в тариф такие большие потери тепловой энергии. Какова структура этих потерь? Как осознанно решать вопросы повышения эффективности работы систем пароснабжения? Для решения этих вопросов необходимо выявить структуру дисбаланса, оценить нормативные и сверхнормативные потери тепловой энергии.

Для количественной оценки дисбаланса была усовершенствована программа гидравлического расчета паропровода перегретого пара, разработанная на кафедре для учебных целей. Понимая, что при снижении расходов пара у потребителей, скорости теплоносителя уменьшаются, и относительные потери теплоты при транспорте возрастают. Это приводит к тому, что перегретый пар переходит в насыщенное состояние с образованием конденсата. Поэтому была разработана подпрограмма, позволяющая: определять участок, на котором перегретый пар переходит в насыщенное состояние; определять длину, на которой пар начинает конденсироваться и далее производить гидравлический расчет паропровода насыщенного пара; определять количество образующегося конденсата и потери теплоты при транспорте. Для определения плотности, изобарной теплоемкости и скрытой теплоты парообразования по конечным параметрам пара (P, T) использованы упрощенные уравнения, полученные на основе аппроксимации табличных данных, описывающих свойства воды и водяного пара в области давлений 0,002+4 МПа и температур насыщения до 660 О С .

Нормативные потери теплоты в окружающую среду определялись по формуле:

где q - удельные линейные тепловые потери паропровода; L - длина паропровода, м; в - коэффициент местных потерь теплоты.

Потери теплоты, связанные с утечками пара, определялись по методике :

где Gnn - нормируемые потери пара за рассматриваемый период (месяц, год), т; Я з - энтальпия пара при средних давлениях и температурах пара по магистрали на источнике теплоты и у потребителей, кДж/кг; ^ - энтальпия холодной воды, кДж/кг.

Нормируемые потери пара за рассматриваемый период:

где V™ - среднегодовой объем паровых сетей, м 3 ; р п - плотность пара при средних давлении и температуре по магистралям от источника тепла до потребителя, кг/м 3 ; n - среднегодовое число часов работы паровых сетей, ч.

Метрологическую составляющую недоучета расхода пара определяли с учетом правил РД-50-213-80 . Если измерение расхода ведется в условиях, при которых параметры пара отличаются от параметров, принятых для расчета сужающих устройств, то для определения действительных расходов по показаниям прибора необходимо произвести пересчет по формуле:

где Q m . a . - массовый действительный расход пара, т/ч; Q m - массовый расход пара по показаниям прибора, т/ч; р А - действительная плотность пара, кг/м 3 ; с - расчетная плотность пара, кг/м 3 .

Для оценки потерь теплоты в системе паро - снабжения был рассмотрен паропровод ПОШ г. Улан-Удэ, который характеризуется следующими показателями:

суммарный расход пара за февраль - 34512 т/месяц;

среднечасовой расход пара - 51,36 т/ч;

средняя температура пара - 297 О С;

среднее давление пара - 8,8 кгс/см 2 ;

средняя температура наружного воздуха - 20,9 О С;

длина основной магистрали - 6001 м (из них диаметром 500 мм - 3289 м);

дисбаланс теплоты в паропроводе - 60,3%.

В результате гидравлического расчета были определены параметры пара в начале и в конце расчетного участка, скорости теплоносителя, выявлены участки, где происходит образование конденсата и связанные с ним потери теплоты. Остальные составляющие определялись по вышеприведенной методике. Результаты расчетов показывают, что при среднечасовом отпуске пара с ТЭЦ 51,35 т/ч потребителям доставлено 29,62 т/ч (57,67%), потери расхода пара составляют 21,74 т/ч (42,33%). Из них потери пара следующие:

с образовавшимся конденсатом - 11,78 т/ч (22,936%);

метрологические из-за того, что потребители не учитывают поправки к показаниям приборов - 7,405 т/ч (14,42%);

неучтенные потери пара - 2,555 т/ч (4,98%). Объяснить неучтенные потери пара можно

осреднением параметров при переходе со среднемесячного баланса на среднечасовой баланс, некоторыми приближениями при расчетах и, кроме того, у приборов имеется погрешность 2-5%.

Что касается баланса по тепловой энергии отпущенного пара, то результаты расчетов представлены в таблице. Откуда видно, что при дисбалансе в 60,3% нормативные потери теплоты составляют 51,785%, сверхнормативные, неучтенные расчетом тепловые потери, - 8,514%. Таким образом, определена структура тепловых потерь, разработана методика количественной оценки дисбаланса расходов пара и тепловой энергии.

Таблица. Результаты расчетов потерь тепловой энергии в паропроводе ПОШ г. Улан-Удэ.

Наименование величин

Общие показатели

Среднечасовой отпуск теплоты с коллекторов ТЭЦ

Полезный среднечасовой отпуск теплоты потребителям

Фактические потери теплоты в паропроводе ПОШ

Нормативные потери теплоты

Эксплуатационные технологические потери тепловой энергии, из них:

тепловые потери в окружающую среду

потери тепловой энергии с нормативными утечками пара

потери теплоты с конденсатом

  • 43,98
  • 0,157
  • 26,76
  • 28,43
  • 0,102
  • 17,298

Метрологические потери из-за недоучета теплоты без введения поправки

Нормативные потери тепловой энергии

Неучтенные расчетом сверхнормативные потери теплоты

пароснабжение паропровод перегретый пар

Литература

  • 1. Абрамов С.Р. Методика снижения тепловых потерь в паропроводах тепловых сетей / Материалы конференции "Тепловые сети. Современные решения", 17-19 мая 2005 г. НП "Российское теплоснабжение".
  • 2. Содномова С.Д. К вопросу определения составляющих дисбаланса в системах пароснабжения / Материалы международной научно-практической конференции "Строительный комплекс России: Наука, образование, практика". - Улан-Удэ: Изд-во ВСГТУ, 2006 г.
  • 3. Ривкин С.Л., Александров А.А. Теплофизические свойства воды и водяного пара. - М.: Энергия 1980 г. - 424 с.
  • 4. Определение эксплуатационных технологических затрат (потерь) ресурсов, учитываемых при расчете услуг по передаче тепловой энергии и теплоносителя. Постановление ФЭК РФ от 14 мая 2003 г. № 37-3/1.
  • 5. РД-50-213-80. Правила измерения расхода газов и жидкостей стандартными сужающими устройствами. М.: Изд-во стандартов. 1982 г.