Кпд механизма формула. Цель работы

Механический коэффициент полезного действия, равный отношению среднего эффективного давления к среднему индикаторному, оценивает механические потери в двигателе:

Механический к. п. д. можно выразить и через мощности двигателя:

Таким образом, механический к. п. д. показывает в долях единицы или в процентах ту часть индикатор­ной мощности, которая передается на фланец коленчатого вала.

Анализ механических потерь в двигателе, выполненный нами ранее, позволяет сделать заключение, что значение механического к. п. д. двига­теля зависит: от степени быстроходности двигателя, от величины давления газов цикла и динамики его изменения, от качества изготовления и сборки деталей двигателя, от качества смазочного масла, от теплового состояния двигателя и режима загрузки его, от мощности навешенных вспомогатель­ных механизмов и от сопротивлений во впускной и выпускной системах двигателя.

При прочих равных условиях механический к. п. д. двигателя является функцией отношения среднего эффективного давления к максимальному давлению цикла; чем больше это отношение, тем выше механический к. п. д.

При уменьшении нагрузки на двигатель (сохраняя при этом число оборотов вала неизменным) мощность механических потерь N mex примерно остается постоянной, а потому относительное ее значение возрастает и ме­ханический к. п. д. падает.

На рис. 105 приведены кривые изменения механического к. п. д. ? т при полной нагрузке (сплошные кривые) и при 30 % нагрузки (пунктирные кри­вые) двигателя с воспламенением от сжатия (кривая В; ? = 16) и двигателя с воспламенением от искры (кривая А; ? = 6). Данные кривые показывают, что при уменьшении нагрузки на двигатель при неизменном числе оборотов? т значительно падает. Следует заметить, что при холостом ходе двигателя N e == 0) из формулы (139а)

Таким образом, режим работы холостого хода можно охарактеризовать как режим, при котором механический к. п. д. равен нулю.

При одном и том же р е (как это видно из рис. 105) с увеличением числа оборотов двигателя (скоростная характеристика) ? т падает, что объясняется более интенсивным относительным ростом мощности механических потерь N мех , чем эффективной мощности двигателя.

При работе двигателя с наддувом значение? т изменяется в зависимо­сти от системы и степени наддува. Если двигатель переводится на работу с газотурбинным наддувом, то, как показывают опытные данные, мощность механических потерь N мех при этом остается неизменной. Обозначим отно­шение? н = p ? н / p ? , (степень наддува), где р а - давление в цилиндре в начале сжатия без наддува, а р -с наддувом. Можно принять, что отношение N in / N i также равно? н , где N in - индикаторная мощность двигателя с наддувом, а N i - без наддува.

Если двигатель имел до наддува механический к. п. д. т. ? m , то при газо­турбинном наддуве он будет иметь:

Полученная формула показывает, что с повышением степени наддува при газотурбинном наддуве механический к. п. д. двигателя возрастает.

В том случае, когда газотурбонагнетатель кинематически связан с валом самого двигателя, отношение? К = N к / N i может быть больше, меньше или равно отношению? T = N T / N i в зависимости от степени использования энергии отработавших газов двигателя. Здесь N к - мощность, потребляе­мая наддувочным компрессором, а N T -мощность, развиваемая турбиной.

В этом случае, т. е. когда газотурбонагнетатель связан кинематически: валом двигателя, условный механический к. п. д. будет равен

где? т д -механический к. п. д. собственно двигателя.

При? T > ? К разность (? Т - ? К ) называется положительным небалансом, а при? т к (? к - ? Т ) называется отрицательным небалансом.

Судовые дизели имеют следующие значения механического к. п. д.

Пример. Средняя сила тяги двигателя составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.

В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД в дольных единицах от 0 до 1, чтобы перевести результат , умножьте его на 100.

Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.

Определите общую . Подобного рода сведения можно получить, обратившись к данным переписи населения. Для определения общих коэффициентов рождаемости, смертности, брачности и разводимости вам понадобится найти произведение общей населения и расчетного периода. Получившееся число запишите в знаменатель.

Поставьте на числителя показатель, соответствующий искомому относительному. Например, если перед вами стоит определить общий коэффициент рождаемости, то на месте числителя должно находиться число, отражающее общее количество рожденных за интересующий вас период. Если вашей целью является уровня смертности или брачности, то на место числителя поставьте число умерших в расчетный период или число вступивших в брак, соответственно.

Умножьте получившееся число на 1000. Это и будет искомый вами общий коэффициент. Если же перед вами стоит задача найти общий коэффициент прироста, то вычтите из коэффициента рождаемости коэффициент смертности.

Видео по теме

Источники:

  • Общие коэффициенты естественного движения населения

Под словом «работа» понимается прежде всего деятельность, которая дает человеку средства к существованию. Иными словами, за нее он получает материальное вознаграждение. Тем не менее, люди готовы в свое свободное время или безвозмездно, или за чисто символическую плату участвовать также в общественно-полезной работе, направленной на помощь нуждающимся, благоустройство дворов и улиц, озеленение и т.д. Число таких добровольцев наверняка было бы еще большим, но они зачастую не знают, где могут понадобиться их услуги.

пенсионерки , инвалиды или матери-одиночки, у которых каждый рубль на счету. Окажите им посильную помощь. Она вовсе не обязательно должна заключаться в денежном пожертвовании – можно, например, время от времени ходить в магазин за продуктами или за лекарствами.

Немало людей желает принять участие в благоустройстве родного города. Им стоит связаться с соответствующими структурами местного муниципалитета, например, теми, которые отвечают за уборку территорий, озеленение. Работа наверняка найдется. Кроме того, можно, например, по собственной инициативе разбить клумбу под окнами дома, посадить цветы.

Есть люди, очень любящие животных, желающие помочь безнадзорным собакам и кошкам. Если вы относитесь к этой категории, свяжитесь с местными организациями зоозащитников или с владельцами приютов для животных. Ну а если вы живете в крупном городе, где есть зоопарки, узнайте у администрации, не нужны ли помощники по уходу за животными

Коэффициент увлажнения

Коэффициент увлажнения представляет собой специальный показатель, разработанный специалистами в области метеорологии для оценки степени влажности климата в том или ином регионе. При этом было принято во внимание, что климат представляет собой многолетнюю характеристику погодных условий в данной местности. Поэтому рассматривать коэффициент увлажнения также было решено в длительных временных рамках: как правило, этот коэффициент рассчитывается на основе данных, собранных в течение года.

Таким образом, коэффициент увлажнения показывает, насколько велико количество осадков, выпадающих в течение этого периода в рассматриваемом регионе. Это, в свою очередь, является одним из основных факторов, определяющих преобладающий тип растительности в этой местности.

Расчет коэффициента увлажнения

Формула расчета коэффициента увлажнения выглядит следующим образом: K = R / E. В указанной формуле символом K обозначен собственно коэффициент увлажнения, а символом R - количество осадков, выпавших в данной местности в течение года, выраженное в миллиметрах. Наконец, символом E обозначается количество осадков, которое испарилось с поверхности земли, за тот же период времени.

Указанное количество осадков, которое также выражается в миллиметрах, зависит от , температуры в данном регионе в конкретный период времени и других факторов. Поэтому несмотря на кажущуюся простоту приведенной формулы, расчет коэффициента увлажнения требует проведения большого количества предварительных измерений при помощи точных приборов и может быть осуществлен только силами достаточно крупного коллектива метеорологов.

В свою очередь, значение коэффициента увлажнения на конкретной территории, учитывающее все эти показатели, как правило, позволяет с высокой степенью достоверности определить, какой тип растительности является преобладающим в этом регионе. Так, если коэффициент увлажнения превышает 1, это говорит о высоком уровне влажности на данной территории, что влечет за собой преобладание таких типов растительности как тайга, тундра или лесотундра.

Достаточный уровень влажности соответствует коэффициенту увлажнения, равному 1, и, как правило, характеризуется преобладанием смешанных или . Коэффициент увлажнения в пределах от 0,6 до 1 характерен для лесостепных массивов, от 0,3 до 0,6 - для степей, от 0,1 до 0,3 - для полупустынных территорий, а от 0 до 0,1 - для пустынь.

Источники:

  • Увлажнение, коэффициенты увлажнения

Мы совершаем работу , всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную илизатраченную работу А з и полезную работу А п. Если, например, наша цель-поднять груз массой ш на высоту Н, то полезная работа - это та, которая обусловлена лишь преодолением силы тяжести , действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:

Если же мы применяем для подъема груза блок или какой- либо другой механизм , то, кроме силы тяжести груза, нам приходится преодолевать еще и силу тяжести частей механизма, а также действующую в механизме силу трения . Например, используя подвижный блок, мы вынуждены будем совершать дополнительную работу по подъему самого блока с тросом и по преодолению силы трения в оси блока. Кроме того, выигрывая в силе, мы всегда проигрываем в пути (об этом подробнее будет рассказано ниже), что также влияет на работу. Все это приводит к тому, что затраченная нами работа оказывается больше полезной:
А з > А п.

Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм .

Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется коэффициентом полезного действия механизма.

Чтобы найти КПД механизма, надо полезную работу разделить на ту, которая была затрачена при использовании данного механизма.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой и (читается "эта"):

Поскольку числитель Ап в этой формуле всегда меньше знаменателя Аз, то КПД всегда оказывается меньше 1 (или 100%).

Конструируя механизмы, стремятся увеличить их КПД. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1. В этом случае затраченную работу можно считать примерно равной полезной работе:

Следует помнить, что выигрыша в работе с помощью простого механизма получить нельзя .

Поскольку каждую из работ в равенстве (24.3) можно выразить в виде произведения соответствующей силы на пройденный путь, то это равенство можно переписать так:

Отсюда следует, что,

выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот.

Этот закон называют "золотым правилом" механики. Его автором является древнегреческий ученый Герон Александрийский, живший в I в. н. э.
"Золотое правило" механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см. То же самое будет и в случае, изображенном на рисунке 58. Когда рука человека, держащего веревку, опустится на 20 см, груз, прикрепленный к подвижному блоку, поднимется лишь на 10 см.

Рисунок 47, 58. Демонстрация "золотого правила" механики.

Вопросы.

1. Почему затраченная при использовании механизмов работа оказывается все время больше полезной работы?

2. Что называют коэффициентом полезного действия механизма?

3. Может ли КПД механизма быть равным 1 (или 100%)? Почему?

4. Каким образом увеличивают КПД?

5. В чем заключается "золотое правило" механики? Кто его автор?

6. Приведите примеры проявления "золотого правила" механики при использовании различных простых механизмов.

Отослано читателями из интернет-сайтов

Сборник конспектов уроков по всем классам, рефераты с физики 7 класса, книги и учебники согласно каленадарного планирования физики 7 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Стадии (режимы) движения механизма

В механизмах с одной степенью свободы принято различать три стадии (режима) работы: разбег, установившееся движение и выбег (рис. 1.27). При изучении перечисленных режимов работы механизма воспользуемся уравнением (1.65), в котором суммарную работу всех сил разложим на работу движущих сил , работу сил полезного и вредногосопротивлений:

На стадии разбега скорости звеньев механизма возрастают от нуля до некоторого рабочего значения, соответствующего скорости установившегося значения. Следовательно, на стадии разбега и согласно равенству (1.81) можно записать

Выражение (1.82) показывает, что на стадии разбега при запуске механизма движущие силы должны не только преодолеть силы полезного и вредного сопротивления, но и сообщить механизму кинетическую энергию. В некоторых случаях в связи с требованиями технологического процесса для уменьшения времени пуска подвижные звенья механизма на стадии разбега не нагружаются силами полезного сопротивления . Например, рабочий процесс реза-

Рис. 1.27

ния в металлорежущих станках начинается только после завершения стадии разбега.

Установившийся режим движения механизма это движение, при котором обобщенная скорость и кинетическая энергия механизма являются периодическими функциями времени. Время цикла установившегося движения это минимальный промежуток времени, по истечении которого обобщенная координата и кинетическая энергия механизма принимают те же значения, что и в начале этого промежутки (см. рис. 1.27). Мгновенная скорость меняется за время цикла , но ее среднее значение за цикл и, следовательно, за весь период установившегося движения остается постоянным. Изменение кинетической энергии за весь период установившегося движения равно нулю, и уравнение (1.81) принимает вид

Из уравнения (1.83) очевидно, что энергия движущих сил в установившемся режиме машин расходуется только на преодоление полезных и вредных сопротивлений. И чем меньше работа сил вредного сопротивления (трения и др.), тем эффективнее используется энергия в машине.

На стадии выбега (останова ) скорости звеньев механизма убывают до нуля. Движущие силы отключают, поэтому . В конце выбега , и уравнение (1.81) перепишем следующим образом:

Когда вся кинетическая энергия механизма оказывается израсходованной на преодоление сил полезного и вредного сопротивлений, механизм останавливается. Для уменьшения времени торможения используются тормозные устройства, развивающие дополнительную работу тормозящих сил. Особенно эффективно применение тормозных устройств, если по технологическим причинам полезные сопротивления на стадии выбега выключаются.

Коэффициент полезного действия механизма

Одним из важнейших параметров, оценивающих качество машин и механизмов, эффективность использования ими поступающей энергии, является коэффициент полезного действия. Коэффициент полезного действия (КПД) это отношение работы сил полезного сопротивления к работе движущих сил , совершаемых за один и тот же промежуток времени:

Если КПД вычисляется за бесконечно малый промежуток времени (мгновенный КПД), то вместо отношения работ берется отношение мощностей:

где – мощность на ведомом звене; – мощность на ведущем звене.

Так как за период установившегося движения выполняется равенство (1.83), работу сил полезного сопротивления удобно представить разностью . Тогда КПД механизма при установившемся движении можно подсчитывать по формуле

(1.84)

Отношение называют коэффициентом потерь / При установившемся движении коэффициент потерь определяют равенствами

Коэффициенты полезного действия и потерь являются безразмерными величинами. С практической точки зрения наибольший интерес представляют их значения при установившемся движении механизма.

Анализ формулы (1.84) позволяет сделать следующие выводы:

На КПД влияют многочисленные факторы, связанные с конструкцией механизмов и машин, условиями их эксплуатации. Так, увеличения КПД можно добиться заменой трения скольжения трением качения или применением рациональной смазки в узлах трения.

В реальной действительности работа, совершаемая при помощи какого - либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу - $A_{poln}$. При этом имеем:

Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $\eta $, тогда:

\[\eta =\frac{A_p}{A_{poln}}\ \left(2\right).\]

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\ \left(2\right).\]

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия - это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

КПД при передаче энергии

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

\[\eta =\frac{A_p}{Q}\cdot 100\%\ \left(5\right).\]

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

\[\eta =\frac{Q_n-Q_{ch}}{Q_n}\left(6\right),\]

где $Q_n$ - количество теплоты, полученное от нагревателя; $Q_{ch}$ - количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

\[\eta =\frac{T_n-T_{ch}}{T_n}\left(7\right),\]

где $T_n$ - температура нагревателя; $T_{ch}$ - температура холодильника.

Примеры задач на коэффициент полезного действия

Пример 1

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $\Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?\textit{}

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

Воспользуемся определением коэффициента полезного действия для его нахождения:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\left(1.3\right).\]

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

\[\eta =\frac{mgh}{N\Delta t}\cdot 100\%.\]

Ответ. $\eta =\frac{mgh}{N\Delta t}\cdot 100\%$

Пример 2

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $\eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

\[\eta =\frac{A_p}{Q}\left(2.1\right).\]

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

Газ совершает полезную работу, которую равна:

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_{34}$). В результате имеем:

Преобразуем формулу (2.1) учитывая результаты (2.2) - (2.4):

\[\eta =\frac{A_{12}+A_{34}}{A_{12}}\to A_{12}\eta =A_{12}+A_{34}\to A_{34}=(\eta -1)A_{12}\left(2.4\right).\]

Так как по условию $A_{12}=A_0,\ $окончательно получаем:

Ответ. $A_{34}=\left(\eta -1\right)A_0$