Монохроматические аберрации. Геометрические и хроматические аберрации объективов

Аберрации

Представление о глазе как о совершенном оптическом приборе мы приобретаем еще со школы при изучении раздела физики «Оптика». При изучении соответствующих наук в высшем или среднем специальном учебных заведениях такое представление о глазе закрепляется, обрастая дополнительной информацией. Поэтому высказывание С.Н. Федорова о том, что глаз является несовершенным прибором и задача офтальмолога в усовершенствовании его, долгое время воспринималось многими врачами со скепсисом.

А что есть лазерная коррекция, если не усовершенствование ошибок природы? Ошибками природы здесь можно назвать близорукость, дальнозоркость и астигматизм. И не только. Ученые-оптики знали об этом давно. Они знали, что при конструировании даже самой простой подзорной трубы необходимо не только сфокусировать оптическую систему в одной точке (исключить близорукость, дальнозоркость и астигматизм подзорной трубы), но и обеспечить качество получаемого изображения. Линзы, из которых делают подзорную трубу, должны быть из хорошего стекла, почти идеальной формы и с хорошо обработанной поверхностью. Иначе изображение будет нечетким, искаженным и размытым. Вот тогда и началось изучение аберраций - мельчайших шероховатостей и неравномерностей преломления. А с появлением аппаратов для выявления и измерения аберраций глаза в офтальмологию вошло новое измерение - аберрометрия.

Аберрации могут быть разного порядка
. Самыми простыми и наиболее известными аберрациями являются собственно те самые близорукость, дальнозоркость и астигматизм. Их называют дефокусом или аберрациями второго, низшего порядка. Аберрации высшего порядка и являются теми самыми шероховатостями и неравномерностями преломления, о которых уже упоминалось выше.

Аберрации высшего порядка также делят на несколько порядков. Принято считать, что на качество зрения влияют аберрации в основном до седьмого порядка. Для удобства восприятия существует набор полиномов Зернике, отображающий виды монохроматических аберраций как трехмерную модель неравномерности преломления. Набором этих полиномов более-менее точно можно отобразить любую неровность рефракции глаза.

Откуда появляются аберрации?

Они есть у всех. Из них и состоит индивидуальная карта преломления глаза. Современные аппараты обнаруживают аберрации высшего порядка, как-то влияющие на качество зрения, у 15 % людей. Но индивидуальные особенности преломления есть у каждого.

Поставщиками аберраций являются роговица и хрусталик.

Причинами аберраций могут быть:

Врожденная аномалия (совсем небольшие и слабо влияющие на зрение неравномерности, лентиконус);

Травма роговицы (рубец роговицы стягивает окружающую ткань, лишая роговицу сферичности);

Операция (радиальная кератотомия, удаление хрусталика через роговичный разрез, лазерная коррекция, термокератопластика и другие операции на роговице);

Заболевания роговицы (последствия кератита, бельмо, кератоконус, кератоглобус).

Причиной внимания офтальмологов к аберрациям является офтальмохирургия . Не обращая внимания на аберрации и не принимая в расчет их влияние на качество зрения, офтальмология просуществовала довольно долго. До этого аберрации изучали и боролись с их негативным влиянием только производители подзорных труб, телескопов и микроскопов.

Операции на роговице или хрусталике (имеется в виду роговичный разрез) на несколько порядков увеличивают аберрации высшего порядка, что иногда может приводить к снижению послеоперационной остроты зрения. Поэтому широкое внедрение в офтальмологическую практику имплантации искусственного хрусталика, кератотомии и лазерной коррекции способствовало развитию диагностической аппаратуры: появились кератотопографы, анализирующие карту преломления роговицы, а теперь и аберрометры, анализирующие весь волновой фронт от передней поверхности роговицы до сетчатки.

Аберрации, появившиеся из-за ЛАСИК

Исправляя дефокус (близорукость, дальнозоркость), рефракционный хирург прибавляет пациенту аберраций высокого порядка.

Формирование микрокератомом роговичного лоскута приводит к росту аберраций высшего порядка.

Осложнения во время ЛАСИК приводят к росту аберраций высшего порядка.

Процесс заживления приводит к росту аберраций высшего порядка.

Борьба с аберрациями, индуцированными ЛАСИК

Убирать микрошероховатости и неравномерности с помощью эксимерного лазера с щелевой подачей луча не представлялось возможным. Изобретена и внедрена в производство установка с возможностью точечной абляции, то есть диаметр лазерного луча в некоторых моделях менее миллиметра. С использованием полиномов Зернике были введены в практику компьютерные программы, позволяющие автоматически преобразовывать полученную из аберрометра индивидуальную карту рефракции в лазерной установке в алгоритм, управляющий лучом, устраняющим не только остаточный дефокус, но и аберрации высшего порядка. Полиномы Зернике становятся набором инструментов, каждый из которых предназначен для удаления определенного компонента в аберрационном комплексе. Как у столяра рубанок предназначен для выравнивания, долото - для углубления, пила -для разделения, топор - для раскалывания. Все не так просто, конечно. Как у топора можно найти не одно, а десять способов применения, так и полином предназначен для удаления пространственно довольно сложных форм. Но основной принцип понятен.

Роговица при проведении такой персонализированной лазерной абляции должна приближаться по своей форме к уровню оптически идеальной сферы.

Суперзрение

После проведения персонализированной лазерной коррекции у некоторых пациентов была получена острота зрения более 1,0. Пациенты видели не только десять строчек, но и одиннадцать, и двенадцать, и даже больше. Этот феномен был назван «суперзрение».

В научных кругах разгорелась дискуссия чуть ли не о нарушении прав человека. Насколько корректно давать человеку слишком хорошее зрение, ведь он увидит изъяны на лицах близких людей, станет различать каждый пиксель на экране компьютера и телевизора, страдать от избытка визуальной информации. Вполне научный подход. Может быть, этот спор и будет актуальным через несколько лет.

Однако параллельно с этим спором появились и коммерческие предложения . В рекламах эксимерных клиник обещали суперзрение каждому. Но суперзрение не прогнозируемо! У кого-то из пациентов получится, а у десятков других - нет. Ведь способность к суперзрению определяется размерами фотодетекторов глаза, тех самых колбочек на сетчатке. Чем меньше колбочка и чем больше ее плотность в макуле, тем более мелкий предмет сможет разглядеть человек. К тому же влияние каждого вида аберраций высшего порядка на зрение еще недостаточно изучено. Поэтому коммерческое предложение суперзрения в виде суперЛАСИКа (см. выше) некорректно. Можно лишь говорить о персонализированной лазерной коррекции.

Влияние аберраций на зрение

Во времена «холодной войны» между СССР и США одним из самых важных направлений работы спецслужб двух стран стал научный и военнопромышленный шпионаж. Когда новый советский истребитель МиГ продемонстрировал в локальных войнах явное преимущество своих технических характеристик над самолетами противника, разведка США сделала все, чтобы завладеть секретными разработками конструкторского бюро Артема Микояна. В конце концов им удалось заполучить почти целый МиГ.

Одними из преимуществ МиГа над американскими аналогами являлись его маневренность и скорость, обусловленные крайне низкой по тем временам сопротивляемостью воздуха при полете. Воздух будто совсем не сопротивлялся корпусу самолета, плавно обтекая его контур.

Американские авиаконструкторы для достижения такого эффекта пытались сделать поверхность своих самолетов идеально гладкой, ровной и обтекаемой. Каково же был их удивление, когда они увидели неровную, шероховатую поверхность МиГа с выпирающими шляпками «заклепок и болтов». Секрет обтекаемости российского самолета оказался прост и гениален. Все эти шероховатости во время полета создавали вокруг корпуса самолета своеобразную воздушную подушку, позволяющую максимально снизить сопротивляемость воздуха.

Возможно, это миф или легенда авиаконструкторов, но такая аналогия прекрасно иллюстрирует отношение офтальмологов к аберрациям высшего порядка. Дело в том, что взгляды офтальмологов на вопрос влияния аберраций на зрение за последние десять лет прошли определенную эволюцию, сходную с эволюцией американских конструкторов к характеристикам поверхности самолета.

Как было сказано выше, на проблему аберраций офтальмологи обратили пристальное внимание в основном из-за ухудшения качества зрения после корнеорефракционных операций . Пациенты видели нужное количество строчек, но жаловались на снижение темновой адаптации, искажение и расплывчатость границ видимых предметов. Были и такие, у кого при практически нулевой рефракции (то есть отсутствии близорукости и дальнозоркости) острота зрения недотягивала 1-2 строчки до того уровня, который они давали в очках до коррекции. Немудрено, что отношение к аберрациям было сугубо отрицательным, как к приобретенной либо врожденной патологии. Именно это отношение и послужило причиной гонки за идеальной сферичностью роговицы и суперзрением.

Теперь мнение офтальмологов меняется. Первой ласточкой был легендарный офтальмохирург Палликарис (рефракционный хирург с мировым именем и один из основоположников лазерной коррекции).

В 2001 г. в Каннах он предположил, что у каждого человека, кроме параметров глаза, фиксируемых с помощью современных приборов, существует еще и «динамический зрительный фактор». К чему приведут дальнейшие исследования в этой области, покажет время. Безусловно одно: аберрации могут как снижать, так и повышать остроту зрения.

Возможно, дальнейшее изучение «динамического зрительного фактора» будет базироваться на следующей гипотезе.

Проведение ЛАСИК приводит к увеличению аберраций высшего порядка. Возможно, сужать эти аберрации до семи порядков в научноисследовательской перспективе не совсем правильно. Имеет значение тут и перепад оптической плотности в области интерфейса (подлоскутного пространства), и шероховатость полученной поверхности роговичного ложа, и процессы заживления (ремодуляция формы роговицы, тракция поврежденных фибрилл, неравномерность эпителиалного пласта и т. п.). Все это вкупе с другими аберрациями приводит к размытости фокуса на сетчатке, появлению нескольких изображений. Головной мозг с помощью механизма аккомодации из всех представленных изображений выбирает наиболее четкое и удовлетворяющее его в данный период времени (принцип мультифокальности). Именно индивидуальные особенности адаптации головного мозга к вариабельности получаемого изображения и будут тем самым «динамическим зрительным фактором», от которого зависит - будет данный набор аберраций улучшать зрение у данного человека или снижать его качество. А это уже связано с балансом сознания и подсознания, особенностями психомоторики, интеллектом, психологическим статусом.

Из дебрей предположений к конкретным вопросам.

Какие бывают аберрации?

Хроматическая, астигматизм косых пучков, кома и др. Все вместе они и формируют на сетчатке изображение окружающего мира, восприятие которого у каждого человека строго индивидуальное. Каждый из нас действительно видит мир только по-своему. Одинаковой для всех может быть только полная слепота.

Вот несколько видов аберраций высшего порядка.

1. Сферическая аберрация. Свет, проходящий через периферию двояковыпуклой линзы, преломляется сильнее, чем в центре. Главным «поставщиком» сферической аберрации в глазу является хрусталик, во вторую очередь - роговица. Чем шире зрачок, то есть чем большая часть хрусталика принимает участие в зрительном акте, тем более заметна сферическая аберрация.

В рефракционной хирургии наиболее часто индуцирует сферическую аберрацию:

Искусственный хрусталик;

Лазерная термокератопластика.

2. Аберрации углов наклона оптических пучков. Асферичность преломляющих поверхностей. Представляет собой несовпадение центров изображений светящихся точек, расположенных вне оси оптической системы. Подразделяются на аберрации больших углов наклона (астигматизм наклонных пучков) и малых углов наклона (кома).

Кома не имеет никакого отношения к известному диагнозу реаниматологов. Ее аберрометрическая картина похожа на окружность, расположенную в оптическом центре роговицы и разделенную линией на две ровные половины. Одна из половин имеет высокую оптическую силу, а другая -низкую. При такой аберрации человек видит светящуюся точку как запятую. При описании предметов люди с такой аберрацией используют слова «хвост», «тень», «дополнительный контур», «двоение». Направление этих оптических эффектов (меридиан аберрации) может быть различным. Причиной комы может быть врожденная или приобретенная разбалансировка оптической системы глаза. Оптическая ось (на которой располагается фокус линзы) роговицы не совпадает с осью хрусталика и вся оптическая система не сфокусирована в центре сетчатки, в макуле. Кома может быть в том числе и одним из компонентов неравномерности рефракции при кератоконусе. При проведении ЛАСИК кома может появляться в результате децентровки зоны лазерной абляции или особенностей заживления роговицы при лазерной коррекции дальнозоркости.

3. Дисторсия - нарушение геометрического подобия между предметом и его изображением - искажение. Разноудаленные от оптической оси точки предмета изображаются с различным увеличением.

Лазерная коррекция не является монополистом в коррекции аберраций. Уже разработаны искусственные хрусталики и контактные линзы, компенсирующие некоторые виды аберраций высшего порядка.

Экскурс в офтальмологическую классификацию аберраций

Аберрации подразделяют на три основные группы:

Дифракционные;

Хроматические;

Монохроматические.

Дифракционные аберрации
появляются при прохождении луча света вблизи непрозрачного объекта. Световая волна отклоняется от своего направления, проходя рядом с четкой границей между прозрачной средой (воздухом) и непрозрачной средой. В глазу такой непрозрачной средой является радужка. Та часть светового пучка, которая проходит не в центре зрачка, а у его края, отклоняется, что приводит к светорассеянию по периферии.

Хроматические аберрации возникают вследствие следующего оптического явления. Солнечный свет, как уже говорилось, состоит из световых волн с очень разнообразной длиной. Видимый свет включает в себя диапазон от коротковолновых фиолетовых лучей до длинноволновых красных. Помните считалочку для запоминания спектра видимого света - цветов радуги? «Каждый охотник желает знать, где сидит фазан».

Красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

У каждого из этих видов лучей свой коэффициент преломления. Каждый цвет преломляется в роговице и хрусталике по-своему. Грубо говоря, изображение синих и зеленых частей предмета фокусируются у эметрона сетчаткой, а красные - за ней. В итоге изображение цветного предмета на сетчатке получается более расплывчатым, чем черно-белого. Именно на эффекте, связанном с хроматическими аберрациями, и базируется трехмерное видео.

Монохроматические аберрации, собственно, и являются основным предметом изучения рефракционных хирургов. Именно монохроматические аберрации подразделяются на аберрации высшего и низшего порядков. Монохроматические аберрации низшего порядка: близорукость, дальнозоркость и астигматизм. Монохроматические аберрации высшего порядка: сферическая аберрация, кома, астигматизм косых пучков, кривизна поля, дисторсия, нерегулярные аберрации.

Для описания комплекса монохроматических аберраций высшего порядка используют полиномы математического формализма Зернике (Цернике). Хорошо, если они близки к нулю, а среднеквадратичное отклонение волнового фронта RMS (root mean square) меньше длины волны или равно 0,038 мкм (критерий Марешаля). Впрочем, это уже тонкости рефракционной хирургии.

Стандартная таблица полиномов Зернике
является своего рода набором трехмерных иллюстраций аберраций вплоть до седьмого порядка: дефокус, астигматизм, астигматизм наклонных пучков, кома, сферическая аберрация, трилистник, четырехлистник и так далее, до восьмилистника (trefoil, tetrafoil, pentafoil, hexafoil...). «Трилистники» представляют собой от трех до восьми равномерных секторов окружности с повышенной оптической силой. Их возникновение может быть связано с основными центростремительными направлениями фибрилл стромы, своего рода ребрами жесткости роговицы.

Аберрационная картина глаза весьма динамична. Монохроматические аберрации маскируют хроматические. При расширении зрачка в более темном помещении увеличиваются сферические аберрации, но уменьшаются дифракционные, и наоборот. При возрастном снижении способностей к аккомодации аберрации высшего порядка, ранее являвшиеся стимулом и повышавшие точность аккомодирования, начинают снижать качество зрения.

Поэтому в настоящее время сложно определить значимость положительного и отрицательного влияния каждого вида аберраций на зрение каждого человека.

Роль аберрометрии (с функцией кератотопографии) в предоперационном обследовании

Об этом уже все сказано. По данным аберрометрии составляется индивидуальная карта волнового фронта, по параметрам которой проводится персонализированная лазерная коррекция. У большинства пациентов уровень аберраций высшего порядка, мягко говоря, очень небольшой. И использовать персонализированную лазерную абляцию нет необходимости. Достаточно данных авторефрактокератометрии. Но это не значит, что не стоит гоняться за персонализацией. Ведь если у вас есть аберрации, то их можно выявить только при аберрометрии. И при коррекции вероятнее получить более высокую остроту зрения, чем у вас была когда-либо в очках или даже в контактных линзах.

Рис. 17. Анализатор волнового фронта глаза (аберрометр с функцией кератотопографии). Суть кератотопографии в следующем. На переднюю поверхность роговицы проецируются светящиеся концентрические круги (диск Плачидо) (б) и их отражение фотографируется аппаратом (а). По разнице между параметрами проецируемых и отраженных кругов аппарат вычисляет кривизну роговицы в 10000 точек и формирует «карту» рефракции.

Персонализированную лазерную абляцию еще проводят при докоррекции, при коррекции после других операций и при тонкой роговице.

Что касается диагностики как таковой, то есть поиска патологии, то тут главное - не пропустить кератоконус.

Еще раз о кератоконусе

Рефракционному хирургу выявить кератоконус при наличии соответствующей аппаратуры достаточно просто. Но проблема не в этом. Проблема в ответственности. Так же, как и сложность работы сапера не только в знании премудростей ремесла. Сложность в том, что сапер ошибается только один раз. С кератоконусом ошибаться нельзя. Ни разу. А для этого нужно постоянно держать в голове его косвенные признаки:

Миопический астигматизм чаще с косыми осями;

Оптическая сила роговицы более 46 дптр;

Тонкая роговица;

Удивительно хорошее зрение без очков и удивительно плохое в очках при наличии выраженного астигматизма;

Прогрессирование астигматизма;

Локальное выпячивание роговицы, чаще в нижнем секторе.

Вот это выпячивание и невозможно пропустить при кератотопографии (либо аберрометрии) . Выпячивание сопровождается ростом оптической силы. Общепринятый стандарт цветовой индикации окрашивает на снимке волнового фронта в синий цвет участки с меньшей оптической силой (диоптрийностью), а в красный цвет - с большей. Классический кератоконус выглядит как пятно красного цвета в нижнеправом или нижнелевом секторе роговицы.

К слову, обычный астигматизм высокой степени выглядит как красная бабочка. Иногда крылья этой бабочки теряют симметричность. Одно крыло становится огромным, смещается книзу, а другое уменьшается. Как песок в песочных часах, оптическая сила перетекает из верхней части в нижнюю. Вот это уже может быть проявлением кератоконуса. Делать лазерную коррекцию в таком случае нельзя.

Кто хуже переносит приобретенные после ЛАСИК аберрации?

Молодые люди с лабильной психикой и широким зрачком. У каждого из нас размер зрачка на свету разный. В среднем три миллиметра, но у некоторых с рождения бывает на пару миллиметров больше. А чем больше зрачок, тем больше площадь роговицы и хрусталика, принимающая участие в акте зрения. И тем больше мелких шероховатостей искажают изображение. Как правило, мозг не обращает внимания на такие мелочи. Так же как исключает из зрительной информации плавающие помутнения в стекловидном теле (они есть у большинства близоруких людей), и человек обращает на них внимание только иногда, глядя на слепяще-белый снег или, скажем, на светлый экран компьютера. Но у тонких, творческих, нервических натур восприятие часто обострено, и это может способствовать тому, что они постоянно обращают внимание на подобные раздражители. Это не придирчивость, а особенность нервной системы, как, например, индивидуальный порог болевой чувствительности.

В таких случаях можно попробовать выработать у мозга привыкание к аберрациям, а точнее, отвлечь его внимание от этой проблемы, в течение месяца закапывая капли, сужающие зрачок (пилокарпин). В случае неудачи такой тактики придется сделать докоррекцию с целью уменьшения аберраций высшего порядка.

Где в повседневной практике окулист может столкнуться с аберрациями высшего порядка?

При кератоконусе острота зрения с полной очковой коррекцией часто недотягивает до 1,0. При проверке зрения через диафрагму в три миллиметра и меньше острота зрения значительно улучшается (см. выше). И в том и в другом случае причина происходящего в аберрациях.

После удаления катаракты с имплантацией искусственного хрусталика пациент часто, даже с полной очковой коррекцией, не видит 1,0. Далеко не во всех случаях это связано с заболеваниями сетчатки, амблиопией или вторичной катарактой.

Искусственный хрусталик меньшего диаметра, чем естественный. Иногда искусственный хрусталик может стоять неровно. При проведении операции роговичным разрезом изменяется сферическая форма роговицы. Все эти причины вызывают аберрации высшего порядка. В крайнем случае их можно уменьшить, проведя персонализированную лазерную коррекцию (более подробно о биоптике в следующей главе).

Имеет смысл провести аберрометрию и при так называемой куриной слепоте, проявляющейся ухудшением остроты зрения в сумерках, но не сопровождающейся признаками серьезных заболеваний сетчатки (тапеторетинальная абиотрофия и др.).

Примеров можно привести немало. При появлении подозрений на наличие аберраций пациента можно направить на обследование в центр рефракционной хирургии.

Статья из книги:

© 2013 сайт

Аберрации фотографического объектива – это последнее, о чём стоит думать начинающему фотографу. Они абсолютно не влияют на художественную ценность ваших фотографий, да и на техническое качество снимков их влияние ничтожно. Тем не менее, если вы не знаете, чем занять своё время, прочтение данной статьи поможет вам разобраться в многообразии оптических аберраций и в методах борьбы с ними, что, конечно же, бесценно для настоящего фотоэрудита.

Аберрации оптической системы (в нашем случае – фотографического объектива) – это несовершенство изображения, которое вызывается отклонением лучей света от пути, по которому они должны были бы следовать в идеальной (абсолютной) оптической системе.

Свет от всякого точечного источника, пройдя через идеальный объектив, должен был бы формировать бесконечно малую точку на плоскости матрицы или плёнки. На деле этого, естественно, не происходит, и точка превращается в т.н. пятно рассеяния, но инженеры-оптики, разрабатывающие объективы, стараются приблизиться к идеалу насколько это возможно.

Различают монохроматические аберрации, в одинаковой степени присущие лучам света с любой длиной волны, и хроматические, зависящие от длины волны, т.е. от цвета.

Коматическая аберрация или кома возникает, когда лучи света проходят через линзу под углом к оптической оси. В результате изображение точечных источников света приобретает по краям кадра вид ассиметричных пятен каплеобразной (или, в тяжёлых случаях, кометообразной) формы.

Коматическая аберрация.

Кома бывает заметна по краям кадра при съёмке с широко открытой диафрагмой. Поскольку диафрагмирование уменьшает количество лучей, проходящих через край линзы, оно, как правило, устраняет и коматические аберрации.

Конструкционно с комой борются примерно так же, как и со сферическими аберрациями.

Астигматизм

Астигматизм проявляется в том, что для наклонного (не параллельного оптической оси объектива) пучка света лучи, лежащие в меридиональной плоскости, т.е. плоскости, которой принадлежит оптическая ось, фокусируются отличным образом от лучей, лежащих в сагиттальной плоскости, которая перпендикулярна плоскости меридиональной. Это, в конечном итоге приводит к ассиметричному растягиванию пятна нерезкости. Астигматизм заметен по краям изображения, но не в его центре.

Астигматизм труден для понимания, поэтому я попробую проиллюстрировать его на простом примере. Если представить, что изображение буквы А находится в верхней части кадра, то при астигматизме объектива оно бы выглядело так:

Меридиональный фокус.
Сагиттальный фокус.
При попытке достичь компромисса мы получаем универсально нерезкое изображение.
Исходное изображение без астигматизма.

Для исправления астигматической разности меридионального и сагиттального фокусов требуется не менее трёх элементов (обычно два выпуклых и один вогнутый).

Очевидный астигматизм в современном объективе указывает обычно на непараллельность одного или нескольких элементов, что является однозначным дефектом.

Под кривизной поля изображения подразумевают характерное для весьма многих объективов явление, при котором резкое изображение плоского объекта фокусируется объективом не на плоскость, а на некую искривлённую поверхность. Например, у многих широкоугольных объективов наблюдается выраженная кривизна поля изображения, в результате которой края кадра оказываются сфокусированы как бы ближе к наблюдателю, чем центр. У телеобъективов кривизна поля изображения обычно выражена слабо, а у макрообъективов исправляется практически полностью – плоскость идеального фокуса становится действительно плоской.

Кривизну поля принято считать аберрацией, поскольку при фотографировании плоского объекта (тестовой таблицы или кирпичной стены) с фокусировкой по центру кадра, его края неизбежно окажутся не в фокусе, что может быть ошибочно принято за нерезкость объектива. Но в реальной фотографической жизни мы редко сталкиваемся с плоскими объектами – мир вокруг нас трёхмерен, – а потому свойственную широкоугольным объективам кривизну поля я склонен рассматривать скорее как их достоинство, нежели недостаток. Кривизна поля изображения – это то, что позволяет получить одинаково резкими и передний, и задний план одновременно. Посудите сами: центр большинства широкоугольных композиций находится вдалеке, в то время как ближе к углам кадра, а также внизу, располагаются объекты переднего плана. Кривизна поля делает и то, и другое резким, избавляя нас от необходимости закрывать диафрагму сверх меры.

Кривизна поля позволила при фокусировке на дальние деревья получить резкими ещё и глыбы мрамора внизу слева.
Некоторая нерезкость в области неба и на дальних кустах справа меня в этой сцене мало беспокоила.

Следует, однако, помнить, что для объективов с выраженной кривизной поля изображения непригоден способ автоматической фокусировки, при котором вы сперва фокусируетесь на ближнем к вам объекте, используя центральный фокусировочный датчик, а затем перекомпоновываете кадр (см. «Как пользоваться автофокусом »). Поскольку объект при этом переместится из центра кадра на периферию, вы рискуете получить фронт-фокус вследствие кривизны поля. Для идеального фокуса придётся сделать соответствующую поправку.

Дисторсия

Дисторсия – это аберрация при которой объектив отказывается изображать прямые линии прямыми. Геометрически это означает нарушение подобия между объектом и его изображением вследствие изменения линейного увеличения по полю зрения объектива.

Выделяют два наиболее распространённых типа дисторсии: подушкообразная и бочкообразная.

При бочкообразной дисторсии линейное увеличение уменьшается по мере удаления от оптической оси объектива, в результате чего прямые линии по краям кадра изгибаются наружу, и изображение выглядит выпуклым.

При подушкообразной дисторсии линейное увеличение, напротив, возрастает с удалением от оптической оси. Прямые линии изгибаются внутрь, и изображение кажется вогнутым.

Кроме того, встречается комплексная дисторсия, когда линейное увеличение сперва уменьшается по мере удаления от оптической оси, но ближе к углам кадра снова начинает возрастать. В таком случае прямые линии приобретают форму усов.

Дисторсия наиболее выражена в зум-объективах, особенно с большой кратностью, но заметна и в объективах с фиксированным фокусным расстоянием. Для широкоугольных объективов характерна преимущественно бочкообразная дисторсия (экстремальный пример такой дисторсии – объективы типа fisheye или «рыбий глаз»), в то время как телеобъективам чаще свойственна подушкообразная дисторсия. Нормальные объективы, как правило, наименее подвержены дисторсии, но полностью исправляется она только в хороших макрообъективах.

У зум-объективов часто можно наблюдать бочкообразную дисторсию в широкоугольном положении и подушкообразную дисторсию в телеположении при практически свободной от дисторсии середине диапазона фокусных расстояний.

Степень выраженности дисторсии может также изменяться в зависимости от дистанции фокусировки: у многих объективов дисторсия очевидна, когда они сфокусированы на близлежащем объекте, но делается почти незаметной при фокусировке на бесконечность.

В XXI в. дисторсия не является большой проблемой. Практически все RAW-конвертеры и многие графические редакторы позволяют исправлять дисторсию при обработке фотоснимков, а многие современные камеры и вовсе делают это самостоятельно в момент съёмки. Программное исправление дисторсии при наличии надлежащего профиля даёт прекрасные результаты и почти не влияет на резкость изображения.

Хочу также заметить, что на практике исправление дисторсии требуется не так уж часто, ведь дисторсия бывает заметна невооружённым глазом только тогда, когда по краям кадра присутствуют заведомо прямые линии (горизонт, стены зданий, колонны). В сценах же, не имеющих на периферии строго прямолинейных элементов, дисторсия, как правило, совершенно не режет глаз.

Хроматические аберрации

Хроматические или цветовые аберрации обусловлены дисперсией света. Не секрет, что показатель преломления оптической среды зависит от длины световой волны. У коротких волн степень преломления выше, чем у длинных, т.е. лучи синего цвета преломляются линзами объектива сильнее, чем красного. Как следствие, изображения предмета, формируемые лучами различного цвета, могут не совпадать между собой, что приводит к появлению цветных артефактов, которые и называются хроматическими аберрациями.

В чёрно-белой фотографии хроматические аберрации не так заметны, как в цветной, но, тем не менее, они существенно ухудшают резкость даже чёрно-белого изображения.

Различают два основных типа хроматических аберраций: хроматизм положения (продольная хроматическая аберрация) и хроматизм увеличения (хроматическая разность увеличения). В свою очередь, каждая из хроматических аберраций может быть первичной или вторичной. Также к хроматическим аберрациям относят хроматические разности геометрических аберраций, т.е. различную выраженность монохроматических аберраций для волн разной длины.

Хроматизм положения

Хроматизм положения или продольная хроматическая аберрация возникает, когда лучи света с разной длиной волны фокусируются в разных плоскостях. Иными словами, лучи синего цвета фокусируются ближе к задней главной плоскости объектива, а лучи красного цвета – дальше, чем лучи зелёного цвета, т.е. для синего цвета наблюдается фронт-фокус, а для красного – бэк-фокус.

Хроматизм положения.

К счастью для нас, хроматизм положения научились исправлять ещё в XVIII в. путём комбинирования собирательной и рассеивающей линз, изготовленных из стёкол с разными показателями преломления. В результате продольная хроматическая аберрация флинтовой (собирательной) линзы компенсируется за счёт аберрации кроновой (рассеивающей) линзы, и лучи света с различной длиной волны могут быть сфокусированы в одной точке.

Исправление хроматизма положения.

Объективы, в которых исправлен хроматизм положения, называются ахроматическими. Практически все современные объективы являются ахроматами, так что о хроматизме положения на сегодняшний день можно спокойно забыть.

Хроматизм увеличения

Хроматизм увеличения возникает за счёт того, что линейное увеличение объектива различается для разных цветов. В результате изображения, формируемые лучами с различной длиной волны, имеют немного разные размеры. Поскольку изображения разного цвета отцентрированы по оптической оси объектива, хроматизм увеличения отсутствует в центре кадра, но возрастает к его краям.

Хроматизм увеличения проявляется на периферии снимка в виде цветной каймы вокруг объектов с резкими контрастными краями, такими как, например, тёмные ветви деревьев на фоне светлого неба. В областях, где подобные объекты отсутствуют, цветная кайма может быть незаметной, но общая чёткость всё равно падает.

При конструировании объектива хроматизм увеличения исправить значительно труднее, чем хроматизм положения, поэтому эту аберрацию можно в той или иной степени наблюдать у весьма многих объективов. Этому подвержены в первую очередь зум-объективы с большой кратностью, особенно в широкоугольном положении.

Тем не менее, хроматизм увеличения не является сегодня поводом для беспокойства, поскольку он достаточно легко исправляется программными средствами. Все хорошие RAW-конвертеры в состоянии устранять хроматические аберрации в автоматическом режиме. Кроме того, всё больше цифровых фотоаппаратов снабжаются функцией исправления аберраций при съёмке в формате JPEG. Это означает, что многие объективы, считавшиеся в прошлом посредственными, сегодня с помощью цифровых костылей могут обеспечить вполне приличное качество изображения.

Первичные и вторичные хроматические аберрации

Хроматические аберрации подразделяются на первичные и вторичные.

Первичные хроматические аберрации – это хроматизмы в своём исходном неисправленном виде, обусловленные различной степенью преломления лучей разного цвета. Артефакты первичных аберраций окрашены в крайние цвета спектра – сине-фиолетовый и красный.

При исправлении хроматических аберраций хроматическая разность по краям спектра устраняется, т.е. синие и красные лучи начинают фокусироваться в одной точке, которая, к сожалению, может не совпадать с точкой фокусировки зелёных лучей. При этом возникает вторичный спектр, поскольку хроматическая разность для середины первичного спектра (зелёных лучей) и для его сведённых вместе краёв (синих и красных лучей) остаётся не устранённой. Это и есть вторичные аберрации, артефакты которых окрашены в зелёный и пурпурный цвета.

Когда говорят о хроматических аберрациях современных ахроматических объективов, в подавляющем большинстве случаев имеют в виду именно вторичный хроматизм увеличения и только его. Апохроматы, т.е. объективы, в которых полностью устранены как первичные, так и вторичные хроматические аберрации, чрезвычайно сложны в производстве и вряд ли когда-нибудь станут массовыми.

Сферохроматизм – это единственный заслуживающий упоминания пример хроматической разности геометрических аберраций и проявляется как едва заметное окрашивание зон вне фокуса в крайние цвета вторичного спектра.


Сферохроматизм возникает из-за того, что сферическая аберрация, о которой говорилось выше , редко бывает в равной степени скорректирована для лучей разного цвета. В результате пятна нерезкости на переднем плане могут иметь лёгкую пурпурную кайму, а на заднем плане – зелёную. Сферохроматизм в наибольшей степени свойственен светосильным длиннофокусным объективам, при съёмке с широко открытой диафрагмой.

О чём стоит беспокоиться?

Беспокоиться не стоит. Обо всём, о чём следовало побеспокоиться, разработчики вашего объектива, скорее всего, уже побеспокоились.

Идеальных объективов не бывает, поскольку исправление одних аберраций ведёт к усилению других, и конструктор объектива, как правило, старается найти разумный компромисс между его характеристиками. Современные зумы и так содержат по двадцать элементов, и не стоит усложнять их сверх меры.

Все криминальные аберрации исправляются разработчиками весьма успешно, а с теми, что остались легко поладить. Если у вашего объектива есть какие-то слабые стороны (а таких объективов – большинство), научитесь обходить их в своей работе. Сферическая аберрация, кома, астигматизм и их хроматические разности уменьшаются при диафрагмировании объектива (см. «Выбор оптимальной диафрагмы »). Дисторсия и хроматизм увеличения устраняются при обработке фотографий. Кривизна поля изображения требует дополнительного внимания при фокусировке, но тоже не смертельна.

Иными словами, вместо того чтобы обвинять оборудование в несовершенстве, фотолюбителю следует скорее начать совершенствоваться самому , досконально изучив свои инструменты и используя их в соответствии с их достоинствами и недостатками.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Статья описывает базовые понятия аберраций, классификацию аберраций, а также возможные методики устранения аберраций применительно к микроскопным объективам. В статье описана методика выбора микроскопных объективов исходя из задач исследователя.

Аберрации в оптических системах - погрешность изображения, вызванная любым отклонением реальных лучей от геометрических направлений по которым они должны были бы идти в идеальной оптической системе. Аберрации можно классифицировать на монохроматические (то есть присущие монохроматическим лучам – лучам одной длины волны) и хроматические.

Монохроматические аберрации

Монохроматические аберрации – погрешности, присущие любой реальной оптической системе. Возникновение связано с тем, что поверхности, преломляющие лучи неспособны собрать в точку широкие пучки лучей, падающие на них под большими углами. Монохроматические аберрации приводят к искажению изображения точки в некоторую фигуру рассеяния, что снижает четкость изображения и нарушает подобие изображения и предмета.

Монохроматические аберрации классифицируют пятью аберрациями Зейделя:

S I - сферическая аберрация


Сферическая аберрация оптической системы. Лучи, параллельные оси оптической системы сходится не в точке, а в перетяжке.

Сферическая аберрация оптических систем из-за несовпадения фокусов для лучей света проходящих на разных расстояниях от оптической оси. Нарушает гомоцентричность пучка света, но не нарушает симметричность.
Существует несколько путей исправления сферической аберрации:

Во-первых, снижение кривизны линзы (использование стекла с большим показателем преломления в совокупности с увеличением радиусов поверхностей линзы, сохраняя, тем самым, ее оптическую силу).
Во-вторых, применением комбинации из положительных и отрицательных линз. Обычно параллельно с исправлением сферической аберрации исправляют также хроматические аберрации.
В-третьих, применяют диафрагмирование – отсечение краевых лучей широкого пучка. Способ позволяет снизить значение рассеяния, но непригоден для оптических систем требующих высокой светосилы.
Полностью избавиться от сферической аберрации невозможно, но способы снизить ее эффективно применяются в микроскопии.

S II – кома


Аберрация Кома обусловлена тем, что лучи, приходящие под углом к оптической оси, собираются не в одной точке. Методика исправления Комы схожа с методикой исправления сферических аберраций и, в основном, строится на использовании комбинаций положительных и отрицательных линз.

S III – астигматизм

Астигматизм оптической системыАберрация, при которой изображение точки, лежащей вне оси и сформированное узким пучком лучей представляет собой два перпендикулярных отрезка расположенных на разном расстоянии плоскости Гаусса (плоскости безаберрационного фокуса).

Астигматизм не может быть исправлен диафрагмированием, т.к. проявляется и на узких пучках. Для коррекции астигматизма применяют дуплеты положительных и отрицательных линз.

S IV – кривизна поля изображения


Аберрация, при которой изображение плоского объекта, перпендикулярного оси оптической системы лежит на выпуклой или вогнутой (обычно сферической в случае симметричной оптики) поверхности относительно объектива.

Погрешность вносимая аберрацией, очень сильно сказывается в микроскопии, так как получаемое изображение плоского объекта не находится полностью в фокальной плоскости и, таким образом, на нескорректированной системе мы не можем наблюдать полностью резкое изображение объекта по всему полю.

Кривизна поля корректируется при помощи расчета системы содержащей две и более отрицательных линз, а также использующей воздушное пространство между линзами.

S V – дисторсия


Дисторсия – изменение коэффициента линейного увеличения оптической системы по полю зрения. Дисторсия не приемлема в микроскопии, так как система, подверженная дисторсии, не обеспечивает геометрическое подобие наблюдаемого объекта и его изображения. Дисторсия исправляется подбором линз на этапе проектировки объектива. Также возможно исправление дисторсии на этапе компьютерной обработки изображения.

Хроматические аберрации (ХА)


Хроматические аберрации – погрешности вносимые в изображение разницей коэффициента преломления для пучков с различными длинами волн.
При прохождении света через оптические материалы наблюдается дисперсия – разложение белого света на спектр. Именно явление дисперсии запечатлено на самой знаменитой обложке музыкального альбома 20 века - Pink Floyd – The Dark Side of the Moon.

Для любой оптической линзы коэффициент преломления синих лучей, как правило, больше, чем красных, поэтому точка фокуса синих лучей F blue расположена ближе к задней главной точке линзы, чем точка фокуса красных лучей F red . Отсюда следует, что лучи, полученные разложением белого света, будут иметь различное фокусное расстояние. Единого фокусного расстояния у одной линзы не существует, а есть совокупность фокусных расстояний - по одному фокусу на луч каждого цвета.

Разность F blue -F red это и есть «хроматизм положения» (или хроматической разностью положения, продольной хроматической аберрацией)

Диафрагмирование несколько уменьшает хроматизм положения. При этом изображения предмета в лучах разного цвета будут находиться на разных расстояниях от задней главной точки. Если наводить оптическую систему на резкость по красным лучам, изображение в синих лучах будет не в фокусе, и наоборот.

Конструкция микроскопных объективов рассчитана на устранение хроматических аберраций. Система линз, выполняющих сближение фокусов двух (например, синих и жёлтых) лучей, называется ахроматической, а при сближении фокусов трёх лучей -апохроматической системой.

Основное правило при исправлении ХА является исправление ХА суммарно для всей системы. Нет необходимости исправлять хроматизм каждого элемента. Важно, чтобы суммарная положительная и отрицательная дисперсия элементов системы была равна нулю.

Критерии при выборе микроскопных объективов

Рассмотрев основные типы различных оптических аберраций мы можем описать основные критерии при выборе объективов для лабораторного микроскопа, ведь именно характеристиками объектива определяются разрешающая способность микроскопа, дисторсия, возможность проведения точных измерений, возможность качественного получения большого поля изображения при сильном увеличении путем сшивки частичных полей.
В большинстве случаев при выборе объективов работает правило, что чем качественнее и дороже объектив – тем он лучше для решения любых задач. Но на самом деле, во-первых, это не всегда абсолютно достоверно, во-вторых – экономическую составляющую вопроса это правило не затрагивает. А ведь порой именно она играет решающую роль при выборе оборудования того или иного класса.

Объективы для микроскопов делятся на различные классы в зависимости от коррекции монохроматических и хроматических аберраций. Каждый производитель имеет свою классификацию и свои уникальные названия для каждого из классов, что крайне усложняет прозрачность выбора той или иной линейки.

Все производители различают три больших класса объективов: Ахроматы, Полу-апохроматы (или Флюотары) и Апохроматы. Критерием внесения объектива в тот или иной класс будет являться сходимость фокальных плоскостей для трех основных цветов: красного, зеленого и синего.

Компания Leica Microsystems предлагает следующую оценку критериев (она может незначительно отличаться от оценки других производителей – Zeiss, Olympus, Nikon и др). Эта оценка дает максимально прозрачное представление коррекции ХА в зависимости от класса объектива.

Класс объективов Коррекция хроматических аберраций Применение
Ахроматы (Achromats) Между F red и F blue < 2x DoF*.
т.е. красный и синий лучи сведены в одну область, длиной менее 2 глубин резкости. Расстояние до фокуса зеленого луча не определено.
Рутинная микроскопия в видимом световом диапазоне
Полу-Апохроматы (Semi-Apochromats) F red , F blue и F green <2,5x DoF*.
т.е. фокус красного, синего и зеленого лучей сведены в одну область шириной 2,5 глубины резкости.
Для качественной визуализации в видимом световом диапазоне, а также достижения высококонтрастного изображения.
Апохроматы (Apochromats) F red , F blue и F green <1x DoF*.
т.е. фокус красного, синего и зеленого лучей сведены в одну точку. (Коррекция ХА по трем цветам)
Для решения задач сверхточной микроскопии, измерительной микроскопии при большом увеличении, а также для работы в УФ и ИК диапазонах.

* DoF – Depth of field – глубина резко изображаемого пространства

Каждый класс объективов делится на несколько групп в зависимости от задач применения. В основном речь идет о коррекции монохроматических аберраций, к примеру, План Ахромат и просто Ахромат будут отличаться наличием коррекции сферы, кривизны поля и дисторсии у объектива План Ахромат.

Дополнительно некоторые объективы имеют конструктивные отличия, к примеру, LD (Long distance) объективы – объективы с увеличенным рабочим расстоянием для работы с чашками Петри в биологии, или контроля объектов со сложной топографией в материаловедении. PH – объективы для фазового контраста с установленным фазовым кольцом (могут использоваться и в светлом поле, но светопропускание таких объективов ниже). OIL-объективы с использованием иммерсионного масла и т.д.

Аберра́ция оптической системы - ошибка или погрешность изображения в оптической системе , вызываемая отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической системе . Аберрацию характеризуют различного вида нарушения гомоцентричности в структуре пучков лучей, выходящих из оптической системы.

Величина аберрации может быть получена как сравнением координат лучей путём непосредственного расчёта по точным геометро-оптическим формулам, так и приближённо - с помощью формул теории аберраций.

При этом возможно характеризовать аберрацию как критериями лучевой оптики , так и на основе представлений волновой оптики . В первом случае отступление от гомоцентричности выражается через представление о геометрических аберрациях и фигурах рассеяния лучей в изображениях точек. Во втором случае оценивается деформация прошедшей через оптическую систему сферической световой волны, вводя представление о волновых аберрациях. Оба способа описания взаимосвязаны, описывают одно и то же состояние и различаются лишь формой описания.

Как правило, если объектив обладает большими аберрациями, то их проще характеризовать величинами геометрических аберраций, а если малыми, то на основе представлений волновой оптики.

Аберрации можно разделить на монохроматические, то есть присущие монохромным пучкам лучей, и .

Энциклопедичный YouTube

  • 1 / 5

    Такие погрешности изображений присущи всякой реальной оптической системе, и принципиально неустранимы. Их возникновение объясняется тем, что преломляющие поверхности неспособны собрать в точку широкие пучки лучей, падающие на них под большими углами.

    Эти аберрации приводят к тому, что изображением точки является некоторая размытая фигура (фигура рассеяния), а не точка, что, в свою очередь, отрицательно влияет на чёткость изображения и нарушает подобие изображения и предмета.

    Теория аберраций

    Теория геометрических аберраций устанавливает функциональную зависимость аберраций от координат падающего луча и конструктивных элементов оптической системы - от радиусов её поверхностей, толщин, показателей преломления линз и т. д.

    Монохроматические аберрации третьего порядка

    Теория аберраций ограничивается приближённым представлением составляющих аберраций ( δ g ′ {\displaystyle \delta g"} и δ G ′ {\displaystyle \delta G"} ) в виде ряда, члены которого содержат некие коэффициенты (суммы переменных) a 1 , a 2 , … , a k {\displaystyle a_{1},a_{2},\dots ,a_{k}} , зависящие только от конструктивных элементов оптической системы и от положения плоскостей объекта и входного зрачка, но не зависящие от координат луча. Так например, меридиональная составляющая аберрации третьего порядка может быть представлена формулой:

    δ g ′ = a 1 ′ m 3 + a 2 ′ l m 2 + a 3 ′ l 2 m + a 4 ′ l 3 {\displaystyle \delta g"=a"_{1}m^{3}+a"_{2}lm^{2}+a"_{3}l^{2}m+a"_{4}l^{3}} ,

    где l {\displaystyle l} и m {\displaystyle m} - координаты луча, входящие в качестве сомножителей членов ряда.

    Число таких коэффициентов аберраций третьего порядка равно пяти и, как правило, они обозначаются буквами S I , S II , S III , S IV , S V .

    Причём, в целях упрощения анализа, предполагают, что в формулах только один из коэффициентов не равен нулю, и определяет соответствующую аберрацию.

    Каждым из пяти коэффициентов определяется одна из так называемых пяти аберраций Зейделя :

    В реальных системах отдельные виды монохроматических аберраций почти никогда не встречаются. В действительности, наблюдается сочетание всех аберраций, а исследование сложной аберрационной фигуры рассеяния методом выделения отдельных видов аберраций (любого порядка) - не более чем искусственный приём, облегчающий анализ явления.

    Монохроматические аберрации высших порядков

    Как правило, картину распределения лучей в фигурах рассеяния заметно осложняет то, что на комбинацию всех аберраций третьего порядка налагаются аберрации высших порядков. Это распределение заметно меняется с изменением положения точки объекта и отверстия системы. Так например, сферическая аберрация пятого порядка, в отличие от сферической аберрации третьего порядка, отсутствует в точке на оптической оси, но при этом растёт пропорционально квадрату удаления от неё.

    Влияние аберраций высших порядков возрастает, по мере роста относительного отверстия объектива, причём настолько быстро, что, на практике, оптические свойства светосильных объективов определяются именно высшими порядками аберраций.

    Величины аберраций высших порядков учитываются на основании точного расчёта хода лучей через оптическую систему (трассировки). Как правило, с применением специализированных программ для оптического моделирования (Code V, OSLO, ZEMAX и пр.)

    Хроматические аберрации

    хроматическая аберрация (хроматизм) увеличения .

    Так же к хроматическим аберрациям принято относить хроматические разности геометрических аберраций , в основном, хроматическую разность сферических аберраций для лучей различных длин волн (так. наз. «сферохроматизм»), и хроматическую разность аберраций наклонных пучков.

    Дифракционная аберрация

    Дифракционная аберрация обусловлена волновой природой света, и следовательно - носит фундаментальный характер, и поэтому принципиально не устранима. Высококачественные объективы страдают ею в точно той же мере, что и дешёвые. Она может быть уменьшена лишь посредством увеличения апертуры оптической системы. Эта аберрация возникает вследствие дифракции света λ {\displaystyle \lambda } (лямбда) - длина электромагнитной волны светового диапазона (волны с длиной от 400 нм до 700 нм), а D {\displaystyle D} - диаметр объектива (в тех же единицах, что и λ {\displaystyle \lambda } ).

    В оптических системах полностью устранить аберрации невозможно. Их доводят до минимально возможных значений, обусловленных техническими требованиями и ценой изготовления системы. Иногда, также, минимизируют одни аберрации за счёт увеличения других.

    Аберрация оптических систем (от лат. aberratio − уклонение, удаление) − искажения изображений, даваемых реальными оптическими системами, заключающиеся в том, что оптические изображения неточно соответствуют предмету, оказываются размыты (монохроматические геометрические аберрации оптических систем) или окрашены (хроматические аберрации оптических систем). В большинстве случаев аберрации обоих типов проявляются одновременно.
     В приосевой, так называемой параксиальной, области оптическая система близка к идеальной, т. е. точка изображается точкой, прямая линия − прямой и плоскость − плоскостью. Но при конечной ширине пучков и конечном удалении точки-источника от оптической оси нарушаются правила параксиальной оптики: лучи, испускаемые точкой предмета, пересекаются не в одной точке плоскости изображений, а образуют кружок рассеяния, т. е. изображение искажается − возникают аберрации.
    Геометрические аберрации оптических систем характеризуют несовершенство оптических систем в монохроматическом свете. Происхождение аберрации оптических систем можно понять, рассмотрев прохождение лучей через центрированную оптическую систему L (рис. 1).

    OO 1 − плоскость предмета, О / О 1 / − плоскость изображений, РР 1 и Р / P 1 / − соответственно плоскости входного и выходного зрачков. В идеальной оптической системе все лучи, испускаемые какой-либо точкой С(z, у) предмета, находящейся в меридиональной плоскости (z = 0 ) на расстоянии у = l от оси, пройдя через систему, собрались бы снова в одну точку С (z o / , y о / ). В реальной оптической системе эти лучи пересекают плоскость изображения O / O 1 / в разных точках. При этом координаты z / и у / точки В пересечения луча с плоскостью изображения зависят от направления луча и определяются координатами р у и р z точки А пересечения с плоскостью входного зрачка. Отрезок С / В характеризует несовершенство изображения, даваемого данной оптической системой. Проекции этого отрезка на оси координат равны δg = y / − y о / и δG = z / − z o / и характеризуют поперечную аберрацию. В заданной оптической системе δg / и δG / являются функциями координат падающего луча СА : δg / = f 1 (l, р у, р z) и δG / = f 2 (l, Р у, Р z) Считая координаты малыми, можно разложить эти функции в ряды по p z и l .
     Линейные члены этих разложений соответствуют параксиальной оптике, следовательно коэфф. при них должны быть равными нулю; чётные степени не войдут в разложение ввиду симметричности оптич. системы; таким образом остаются нечётные степени, начиная с третьей; аберрации 5-го порядка (и выше) обычно не рассматривают, поэтому первичные аберрации оптических систем называются аберрациями 3-го порядка. После упрощений получаются следующие формулы


     Коэффициенты А , В , С , D , Е зависят от характеристик оптической системы (радиусов кривизны, расстояний между оптическими поверхностями, показателей преломления). Обычно классификацию аберраций оптических систем проводят, рассматривая каждое слагаемое в отдельности, полагая другие коэффициенты равными нулю. При этом для наглядности представления об аберрации рассматривают семейство лучей, исходящих из точки-объекта и пересекающих плоскость входного зрачка по окружности радиуса ρ с центром на оси. Ей соответствует определённая кривая в плоскости изображений, а семейству концентрических окружностей в плоскости входного зрачка радиусов ρ , , и т. д. соответствует семейство кривых в плоскости изображений. По расположению этих кривых можно судить о распределении освещённости в пятне рассеяния, вызываемом аберрацией.
    Сферическая аберрация соответствует случаю, когда А ≠ 0 , а все другие коэффициенты равны нулю. Из выражения (*) следует, что эта аберрация не зависит от положения точки С в плоскости объекта, а зависит только от координаты точки А в плоскости входного зрачка, а именно, пропорциональна ρ 3 .  Распределение освещённости в пятне рассеяния таково, что в центре получается острый максимум при быстром уменьшении освещённости к краю пятна. Сферическая аберрация − единственная геометрическая аберрация, остающаяся и в том случае, если точка-объект находится на главной оптической оси системы.
    Кома определяется выражениями при коэффициенте B ≠ 0 . Равномерно нанесённым на входном зрачке окружностям соответствуют в плоскости изображения семейства окружностей (рис. 2) с радиусами, увеличивающимися как ρ 2 , центры которых удаляются от параксиального

    изображения также пропорционально ρ 2 . Огибающей этих окружностей (каустикой) являются две прямые, составляющие угол 60° . Изображение точки при наличии комы имеет вид несимметричного пятна, освещённость которого максимальна у вершины фигуры рассеяния и вблизи каустики. Кома отсутствует на оси центрированных оптических систем.
    Астигматизм и кривизна поля соответствуют случаю, когда не равны нулю коэффициенты С и D . Из выражения (*) следует, что эти аберрации пропорциональны квадрату удаления точки-объекта от оси и первой степени радиуса отверстия.
    Астигматизм обусловлен неодинаковой кривизной оптической поверхности в разных плоскостях сечения и проявляется в том, что волновой фронт деформируется при прохождении оптической системы, и фокус светового пучка в разных сечениях оказывается в разных точках. Фигура рассеяния представляет собой семейство эллипсов с равномерным распределением освещённости. Существуют две плоскости − меридиональная и перпендикулярная ей сагиттальная, в которых эллипсы превращаются в прямые отрезки. Центры кривизны в обоих сечениях называются фокусами, а расстояние между ними является мерой астигматизма. Пучок параллельных лучей, падающих на оптическую систему под углом w (рис. 3),


    в меридиональном сечении имеет фокус в точке m , а в сагиттальном − в точке s . С изменением угла w положения фокусов m и s меняются, причём геометрические места этих точек представляют собой поверхность вращения MOM и SOS вокруг главной оси системы, На поверхности КОК, находящейся на равных расстояниях от MOM и SOS , искажение наименьшее, поэтому поверхность КОК называется поверхностью наилучшей фокусировки. Отклонение этой поверхности от плоскости представляет собой аберрацию, называемой кривизной поля. В оптической системе может отсутствовать астигматизм (например, если MOM и SOS совпадают), но кривизна поля остаётся: изображение будет резким на поверхности КОК , а в фокальной плоскости FF изображение точки будет иметь вид кружка.
    Дисторсия проявляется в случае, если Е ≠ 0 ; как видно из формул (*), она может быть в меридиональной плоскости: δg" = El 3 ; δG / = 0 . Дисторсия не зависит от координат точки пересечения луча с плоскостью входного зрачка (поэтому каждая точка изображается точкой), но зависит от расстояния точки до оптической оси (−l 3 ), поэтому изображение искажается, нарушается закон подобия. Например, изображение квадрата имеет вид подушкообразной и бочкообразной фигур (рис. 4) соответственно в случае E > 0 и E < 0 .
     Труднее всего устранить сферическую аберрацию и кому . Уменьшая диафрагму, можно было бы практически полностью устранить обе эти аберрации, однако уменьшение диафрагмы уменьшает яркость изображения и увеличивает дифракц. ошибки. Подбором линз устраняют дисторсию, астигматизм и кривизну поля изображения.


    Хроматическая аберрация . Излучение обычных источников света обладает сложным спектральным составом, что приводит к возникновению хроматической аберрации. В отличие от геометрических, хроматические аберрации возникают и в параксиальной области. Дисперсия света порождает два вида хроматической аберраций : хроматизм положения фокусов и хроматизм увеличения . Первая характеризуется смещением плоскости изображения для разных длин волн, вторая − изменением поперечного увеличения.
    Хроматическая аберрация (от греч. croma − цвет) − одна из основных аберраций оптических систем, обусловленная зависимостью показателя преломления прозрачных сред от длины волны света . Хроматическая аберрация проявляется в оптических системах, включающих элементы из преломляющих материалов (например, линзы), зеркалам хроматическая аберрация не свойственна, т. е. зеркала ахроматичны.
     Существуют два не зависящих один от другого типа хроматических аберраций: хроматизм положения изображения и хроматизм увеличения . Хроматизм положения состоит в том, что изображения удалённой точки, формируемые лучами разной длины волны, не совпадают для лучей разного цвета, располагаясь вдоль некоторого отрезка О 1 О 2 (т. е. немонохроматический пучок света имеет целую совокупность фокусов вдоль отрезка оптической оси; см. рис.).


     В этом случае на экране, поставленном перпендикулярно оптической оси в области формирования изображения, вместо одной светлой точки наблюдается совокупность цветных кружков.
     Хроматизм увеличения заключается в том, что поперечные увеличения изображений объекта, формируемых лучами разной длины волны, могут оказаться различными. Это вызвано различием положений гл. плоскостей системы для лучей разного цвета, что может иметь место, даже если их фокусы совпадают, но различаются фокусные расстояния. Из-за хроматизма увеличения изображение предмета конечных размеров оказывается окружённым цветной каймой.
    Исправлять хроматизм положения в оптической системе можно, совмещая фокусы для лучей света разной длины волны. В простейшем случае совмещение фокусов для лучей двух длин воли (и уменьшение взаимного удаления фокусов лучей др. длин волн) сравнительно несложно. Такие системы (обычно объективы) называются ахроматами. В более совершенных апохроматах фокусы совмещают для лучей трёх длин волн, для чего увеличивают число элементов системы с разными показателями преломления и вводят в систему зеркала. Ещё более тщательное исправление хроматизма положения требует дальнейшего усложнения конструкции системы, тем большего, чем больше её относительное отверстие и угол поля зрения оптической системы (число линз и зеркал увеличивается и форма их усложняется).
     При исправлении хроматизма увеличения необходимо совместить главные плоскости для возможно большего числа лучей с разными длинами волн, что связано с большими трудностями.
     Литература: Слюсарев Г. Г., Методы расчета оптических систем, 2 изд., Л., 1969; Сивухин Д. В., Общий курс физики, [т, 4] - Оптика, 2 изд., М., 1985; Теория оптических систем, 2 изд, М., 1981. Г. Г. Слюсарев