Жидкое ли стекло? Из чего делают стекло – процесс изготовления, состав и свойства.

В вопросе есть неверное предположение, что жидкость не бьется. Жидкость очень даже бьется, только при этом "осколки" сразу принимают форму, обеспечивающую минимальную поверхностную энергию (то есть, шар, но сильно искаженный за счет того, что есть смачивание, сорбция, гравитация и прочие особенности реального мира). Отличия от стекла здесь в принципе: а) в прочности, которая у стекла заметно выше, чем у жидкостей с вязкостью не на много порядков выше, чем у воды, и б) в форме "осколков", у стекла она произвольная, у жидкости - нет (см. выше).

Теперь насчет более сложного вопроса о том, стекло - жидкость или нет. Тут нету строгого ответа, поскольку стекло - это не совсем строгое понятие и ответ будет зависеть от того, как определить стекло. Кроме того, есть стекло - как оконное стекло: смесь силикатов щелочных/щелочноземельных элементов, а есть стекло - как состояние вещества: идеально аморфное тело, в котором нет дальнего порядка. Очевидно, что если мы берем оконное стекло или что-то в этом роде, то мы имеем достаточно определенную систему со своими свойствами, ее можно хорошо описать на количественном уровне, а если мы берем стекло во втором смысле, то там уже начинаются сложности, поскольку это могут быть очень разные системы со своими хитростями. Нужно понимать, что стекло во втором смысле - это скорее модель, чем реальный объект. Что-то вроде идеального кристалла, у которого нет дефектов, нет границ и тд. Реальные системы, включая сюда и оконное стекло, могут достаточно сильно отличаться от идеального объекта и еще разительнее различаться между собой.

Давайте про оконное стекло. Почему говорят, что такое стекло - не жидкость? Во-первых, это стекло, как и многие другие, не обладает текучестью ниже температуры стеклования. Все рассказы про "мее-е-едленно течет" - в топку. Не течет. Это вопрос энергии связи, которая, кстати, в стеклах бывает сильно разная, но в оконном стекле - это ионная связь, которая в данном случае весьма сильная, и ковалентная полярная связь в силикатных цепочках, которая еще сильнее. Течение, как упорядоченный сдвиг структурных элементов относительно друг друга, в стекле при комнатной температуре невозможен. Отсюда следует и то, что стекло никогда не примет форму сосуда. Ежели, скажем, его осколки накидать в кувшин, то, увы, ни через 10, ни через 10^10 лет вы оттуда не вынете слиток в форме кувшина. Таким образом, мы имеем противоречие с обычным определением жидкости как агрегатного состояния (постоянный объем, но принимает форму сосуда). То есть, стекло - не жидкость.

Теперь почему говорят, что стекло - жидкость. А вот тут интереснее. ОК, пусть стекло - твердое тело. Значит, если его нагревать, то рано или поздно оно расплавится. И да, все знают, что это так и есть - нагрейте стекло и оно станет мягким, а потом потечет. Ура, отлично! А теперь, пожалуйста, скажите мне температуру плавления стекла? То есть, температуру, при которой происходит переход из твердого состояние в жидкое, что является фазовым переходом первого рода, при котором происходит скачкообразное изменение первых производных термодинамических потенциалов по температуре, давлению и т.п. И который сопровождается резким выделением/поглощением тепла. Ой, а вот с этим сложно, этой температуры, гммм..., её просто нет. Равно как и скачкообразного изменения первых производных, увы. Нет перехода из твердого тела в жидкое, хотя после определенной температуры стекло уже вполне себе течет если не как вода, то как мёд примерно или там какой-нибудь кефир. А раз не было перехода, значит и при более низких температурах стекло было жидким, просто вязкость вот такая ого-го какая. То есть, стекло - жидкость.

В связи с такими ужасными противоречиями было введено специальное понятие т.н. "неосновного" агрегатного состояния - аморфное тело. То есть тело, которое не обладает дальним порядком структуры и проявляет как некоторые свойства твердых тел, так и некоторые свойства жидких тел. Его можно рассматривать как переохлажденную жидкость или как твердое тело, лишенное дальнего порядка, но и то и другое будет лишь некоторым приближением. В зависимости от температуры, при которых мы его рассматриваем, и от типа связей внутри него оно может быть больше похоже на твердое тело, а может быть больше похоже на жидкость, но не является ни тем, ни другим. "Оконное" стекло - это пример такого аморфного тело, только обычно все-таки с кристаллическим вкраплениями из-за неизбежных несовершенств при производстве, не идеально аморфное тело.

Если быть точным, то не застывшая, а переохлажденная. Поскольку стекло сохраняет основные свойства жидкости даже в привычном твердом состоянии. Вполне понятны возражения – мол стекло не течет! Все очень просто при комнатной температуре оно почти не течет, вернее течет, но крайне медленно, но стоит его только нагреть, движение сразу станет наглядным.

Нагревание стекла или изделия из него до температуры 600 - 900 градусов полностью меняет его свойства. Стекло становится мягким и пластичным, что позволяет придавать ему любую форму.

Это свойственно всем аморфным веществам, к которым относится и стекло, также в эту категорию можно включить все смолы как натуральные, так и искусственные, различные клеи, резину отдельные виды пластических масс.

Разумеется, существует разница в температурах, при которых эти вещества теряют твердость, но принцип везде одинаков.

Секрет кристалла

Главное отличие аморфных веществ от кристаллических, в том, что аморфные не имеют упорядоченной кристаллической решетки. Сохраняя структуру ближних связей, вещество не имеет дальнего порядка расположения атомов и молекул. Таким образом, для аморфных тел типична изотропия свойств и отсутствие определенной точки плавления. То есть по мере повышения температуры аморфные тела постепенно размягчаются и незаметно переходят в жидкое состояние.

Отсюда следует, что кристаллическое тело отличается от жидкости не только и не столько количественно, но и главным образом качественно. То есть аморфное тело смело можно рассматривать как жидкость с бесконечно большой вязкостью.

Загадки стекла

Как человечество познакомилось со стеклом и когда научилось его вырабатывать, узнать уже невозможно. Очевидно, что знакомство это началось с природных аналогов стекла - обсидианов и тектитов.

Известно лишь, что самым древним из найденных на сегодня изделий из рукотворного стекла считается светло-зеленая бусинка размером 9х5,5 мм, обнаруженная в окрестностях города Фивы датируемая 35 годом до н.э.

У Плиния находится и предание о том, стекло, будто торговцы содой, причалив к берегу, принялись готовить обед. Поскольку они не отыскали подходящих камней, им пришлось подпереть котлы кусками соды - и спустя некоторое время сода разогрелась и смешалась с речным песком. Появилась незнакомая ранее жидкость. Несмотря на то, что попытки повторить опыт оказались безуспешными, предание продолжает жить.

Скорее всего, стекло было получено людьми как побочный продукт при выплавке меди.

Виды стекла

Кварцевое стекло

Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты. Кварцевое стекло состоит из диоксида кремния SiO 2 и является самым термостойким стеклом: коэффициент его линейного расширения в пределах 0 - 1000 °С составляет всего 6х10 -7 . Поэтому раскаленное кварцевое стекло, опущенное в холодную воду, не растрескивается.

Температура размягчения кварцевого стекла, при которой достигается динамическая вязкость 10 7 Пуаз (10 Пахс) равна 1250 °С . При отсутствии значительных перепадов давления кварцевые изделия можно применять до этой температуры. Полное же плавление кварцевого стекла, когда из него можно изготавливать изделия, наступает при 1500-1600 °С.

Известно два сорта кварцевого стекла: прозрачный кварц и молочно-матовый . Мутность последнего вызвана обилием мельчайших пузырьков воздуха, которые при плавке стекла не могут быть удалены из-за высокой вязкости расплава. Изделия из мутного кварцевого стекла обладают почти такими же свойствами, как и изделия из прозрачного кварца, за исключением оптических свойств и большей газовой проницаемости.

Поверхность кварцевого стекла обладает незначительной адсорбционной способностью к различным газам и влаге, но имеет наибольшую газопроницаемость среди всех стекол при повышенной температуре. Например, через кварцевую трубку со стенками толщиной в 1 мм и поверхностью 100 см 2 при 750 °С за один час проникает 0,1 см 3 Н 2 , если перепад давлений составляет 1 атм (0,1 МПа).

Кварцевое стекло следует тщательно предохранять от всяких загрязнений, даже таких как жирные следы от рук. Перед нагреванием кварцевого стекла имеющиеся на нем непрозрачные пятна снимают при помощи разбавленной фтороводородной кислоты, а жировые - этанолом или ацетоном.

Кварцевое стекло устойчиво в среде всех кислот , кроме HF и Н 3 РO 4 . На него не действуют до 1200 °С С1 2 и НСl, до 250 °С сухой F 2 . Нейтральные водные растворы NaF и SiF 4 разрушают кварцевое стекло при нагревании. Оно совершенно непригодно для работ с водными растворами и расплавами гидроксидов щелочных металлов.

Кварцевое стекло при высокой температуре сохраняет свои электроизоляционные свойства. Его удельное электрическое сопротивление при 1000 °С равно 10 6 Омхсм.

Обычное стекло

К обычным стеклам относятся известково-натриевое, известково-калиевое, известково-натриево-калиевое.

Известково-натриевое (содовое ), или натрий-кальций-магний-силикатное, стекло применяют для выработки оконных стекол, стеклотары, столовой посуды.

Известково-калиевое (поташное ), или калий-кальций-магний-силикатное, стекло обладает более высокой термостойкостью, повышенным блеском и прозрачностью; используется для выработки высококачественной посуды.

Известково-натриево-калиевое (содово-поташное ), или натрий-калий-кальций-магний-силикатное, стекло имеет повышенную химическую стойкость, благодаря смешению окислов натрия и калия; наиболее распространено в производстве посуды.

Боросиликатное стекло

Стекла с высоким содержанием SiO 2 , низким - щелочного металла и значительным - оксида бора B 2 O 3 называются боросиликатными. Борный ангидрид действует как флюс для кремнезема, так что содержание щелочного металла в шихте может быть резко уменьшено без чрезмерного повышения температуры расплавления. В 1915 фирма Корнинг гласс уоркс начала производить первые боросиликатные стекла под торговым названием Пирекс . Стекло марки Пирекс является боросиликатным стеклом с содержанием не менее 80% SiO 2 , 12-13% В 2 O 3 , 3-4% Na 2 О и 1-2% Аl 2 О 3 . Оно известно под разными названиями: Корнинг (США), Дюран 50, Йенское стекло G 2 0 (Германия), Гизиль , Монекс (Англия), ТС (Россия), Совирель (Франция), Симакс (Чехия).

В зависимости от конкретного состава стойкость к термоудару таких стекол в 2-5 раз выше, чем у известковых или свинцовых; они обычно намного превосходят другие стекла по химической стойкости и имеют свойства, полезные для применения в электротехнике.

Температура размягчения стекла «пирекс» до динамической вязкости в 10 11 пуаз (10 10 Пас) составляет 580-590 °С. Тем не менее стекло пригодно для работ при температурах до 800 °С, но без избыточного давления. При использовании вакуума температуру изделий из стекла «пирекс» не следует поднимать выше 650 °С. В отличие от кварцевого стекло «пирекс» до 600 °С практически непроницаемо для Н 2 , Не, O 2 и N 2 . Фтороводородная и нагретая фосфорная кислоты, так же как и водные растворы (даже 5%-ные) КОН и NaOH, а тем более их расплавы, разрушают стекло «пирекс».

Хрустальное стекло

Хрустальные стекла (хрусталь) — высокосортные стекла, обладающие особым блеском и способностью сильно преломлять свет. Различают свинцовосодержащие и бессвинцовые хрустальные стекла.

Свинцовосодержащие хрустальные стекла — свинцово-калиевые стекла, вырабатывают с добавлением окислов свинца, бора и цинка. Характеризуются повышенным весом, красивой игрой света, мелодичным звуком при ударе; применяют для производства высококачественной посуды и декоративных изделий. Наибольшее применение имеет хрусталь с содержанием от 18 до 24% окислов свинца и 14—16,5% окиси калия (легкий).

К бессвинцовым хрустальным стеклам относятся баритовое, лантановое и др.

Баритовое стекло содержит повышенное количество окиси бария. Обладает лучшим блеском, более высокой светопреломляемостью и удельным весом по сравнению с обычными стеклами, применяют как оптическое и специальное стекло.

Лантановое стекло содержит окись лантана La 2 О 3 и лантаниды (соединения лантана с алюминием, медью и др.). La 2 О 3 повышает светопреломление. Отличается высоким качеством; применяется как оптическое .

Свойства стекла

Плотность стекла зависит от его химического состава. Плотность — отношение массы стекла при данной температуре к его объему, зависит от состава стекла (чем больше содержание тяжелых металлов, тем стекло плотнее), от характера термической обработки и колеблется в пределах от 2 до 6 (г/см 3). Плотность — постоянная величина, зная ее, можно судить о составе стекла. Наименьшей плотностью обладает кварцевое стекло — от 2 до 2,1 (г/см 3), боросиликатное стекло имеет плотность 2,23 г/см 3 , наибольшей — оптические стекла с высоким содержанием окислов свинца — до 6 (г/см 3). Плотность известково-натриевого стекла составляет около 2,5 г/см 3 , хрустального — 3 (г/см 3) и выше. Табличным значением плотности стекла является диапазон от 2,4 до 2,8 г/см 3 .

Прочность . Прочностью называется способность материала сопротивляться внутренним напряжениям, возникающим в результате действия внешних нагрузок. Прочность характеризуется пределом прочности. Предел прочности на сжатие для различных видов стекла колеблется от 50 до 200 кгс/мм 2 . На прочность стекла оказывает влияние его химический состав. Так, окислы СаО и B 2 O 3 значительно повышают прочность, РbО и Al 2 O 3 в меньшей степени, MgO, ZnO и Fe 2 O 3 почти не изменяют ее. Из механических свойств стекол прочность на растяжение является одним из важнейших. Объясняется это тем, что стекло работает на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм 2 , т. е. в 15—20 раз меньше, чем на сжатие. Химический состав влияет на прочность стекла при растяжении примерно так же, как и на прочность при сжатии.

Твердость стекла, как и многие другие свойства, зависит от примесей. По шкале Мооса она составляет 6-7 ед, что находится между твёрдостью апатита и кварца. Твердость различных видов стекла зависит от его химического состава. Наибольшую твердость имеет стекло с повышенным содержанием кремнезема — кварцевое и боросиликатное . Увеличение содержания щелочных окислов и окислов свинца снижает твердость; наименьшей твердостью обладает свинцовый хрусталь.

Хрупкость — свойство стекла разрушаться под действием ударной нагрузки без пластической деформации. Сопротивление стекла удару зависит не только от его толщины, но и от формы изделия, наименее устойчивы к удару изделия плоской формы. Для повышения прочности к удару в состав стекла вводят окислы магния, алюминия и борный ангидрид. Неоднородность стекломассы, наличие дефектов (камней, кристаллизации и других) резко повышают хрупкость. Сопротивление стекла удару увеличивается при его отжиге. В области относительно низких температур (ниже температуры плавления) стекло разрушается от механического воздействия без заметной пластической деформации и, таким образом, относится к идеально хрупким материалам (наряду с алмазом и кварцем). Данное свойство может быть отражено удельной ударной вязкостью. Как и в предыдущих случаях, изменение химического состава позволяет регулировать и это свойство: например, введение брома повышает прочность на удар почти вдвое. Для силикатных стекол ударная вязкость составляет от 1,5 до 2 кН/м, что в 100 раз уступает железу. На хрупкость, стекол влияют однородность, конфигурация и толщина изделий: чем меньше посторонних включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в составе стекол B 2 O 3 , SiO 2 , Al 2 O 3 , ZrO 2 , MgO хрупкость незначительно понижается.

Прозрачность - одно из важнейших оптических свойств стекла. Определяется отношением количества прошедших через стекло лучей ко всему световому потоку. Зависит от состава стекла, обработки его поверхности, толщины и других показателей. При наличии примесей окиси железа прозрачность уменьшается.

Термостойкость стекла характеризуется его способностью выдерживать, не разрушаясь, резкие изменения температуры и является важным показателем качества стекла. Зависит от теплопроводности, коэффициента термического расширения и толщины стекла, формы и размеров изделия, обработки поверхности, состава стекла, дефектов. Термостойкость тем выше, чем выше теплопроводность и ниже коэффициент термического расширения и теплоемкость стекла. Толстостенное стекло менее термостойко, чем тонкое. Наиболее термостойко стекло с повышенным содержанием кремнезема, титана и бора. Низкую термостойкость имеет стекло с высоким содержанием окислов натрия, кальция и свинца. Хрусталь менее термостоек, чем обычное стекло. Термостойкость обыкновенного стекла колеблется в пределах 90—250 °С, а кварцевого : 800—1000°С. Отжиг в специальных печах повышает термостойкость в 2,5—3 раза.

Теплопроводность — это способность материала, в данном случае стекла, проводить тепло без перемещения вещества этого материала. У стекла коэффициент теплопроводности равен 1-1,15 Вт/мК.

Тепловое расширение — это увеличение линейных размеров тела при его нагревании. Коэффициент линейного теплового расширения стекол колеблется от 5·10 -7 до 200·10 -7 . Самый низкий коэффициент линейного расширения имеет кварцевое стекло — 5,8·10 -7 . Величина коэффициента термического расширения стекла в значительной степени зависит от его химического состава. Наиболее сильно на термическое расширение стекол влияют щелочные окислы: чем больше содержание их в стекле, тем больше коэффициент термического расширения. Тугоплавкие окислы типа SiO 2 , Al 2 O 3 , MgO, а также B 2 O 3 , как правило, понижают коэффициент термического расширения.

Упругость — способность тела возвращаться к своей первоначальной форме после устранения усилий, вызвавших деформацию тела.

Упругость характеризуется модулем упругости. Модуль упругости — величина, равная отношению напряжения к вызванной им упругой относительной деформации. Различают модуль упругости при осевом растяжении — сжатии (модуль Юнга, или модуль нормальной упругости) и модуль сдвига, характеризующий сопротивление тела сдвигу или сколу и равный отношению касательного напряжения к углу сдвига.

В зависимости от химического состава модуль нормальной упругости стекол колеблется в пределах 4,8х10 4 ...8,3х10 4 , модуль сдвига —2х10 4 —4,5х10 4 МПа. У кварцевого стекла модуль упругости составляет 71,4х10 3 Мпа. Модули упругости и сдвига несколько повышаются при замене SiO 2 на СаО, B 2 O 3 , Al 2 O 3 , MgO, ВаО, ZnO, PbO.

Свойства стекла производства Corning

Код стекла 0080 7740 7800 7913 0211
Тип Силикатное Боро-силикатное Боро-силикатное 96% Силиката Цинково-титановое
Цвет Прозрачное Прозрачное Прозрачное Прозрачное Прозрачное
Термическое расширение (умножать на 10-7 см/см/°С) 0-300 °С 93,5 32,5 55 7,5 73,8
25 °С, до темп. застывания 105 35 53 5,52 -
Верхний предел рабочей темп. для отожженого стекла (для механических свойств) Норм. эксплуатация, °С 110 230 200 900 -
Экстрем. эксплуатация, °С 460 490 460 1200 -
Верхний предел рабочей темп. для закаленного стекла (для механических свойств) Норм. Эксплуатация, °С 220 260 - - -
Экстрем. эксплуатация, °С 250 290 - - -
6,4 мм толщиной, °С 50 130 - - -
12,7 мм толщиной, °С 35 90 - - -
Термостойкость, °С 16 54 33 220 -
Плотность, г/см3 2,47 2,23 2,34 2,18 2,57
Коэффициент оптической чувствительности по напряжениям, (нм/см)/(кг/мм2) 277 394 319 - 361

Как это все же удивительно — ученые совершенно ясно представляют себе структуру сложнейших синтетических пластмасс в то время, как «устройство» древнейшей пластмассы - стекла остается белым пятном на карте наших знаний! Человек сумел расщепить атом , разгадать генетический код, выйти в космос, но у него пока не хватает знаний для того, чтобы разобраться в сущности стекловидного состояния вещества.

Кристалл или не кристалл

Науке пока не удалось найти такую схему, в которую «вмещались» бы все стекла, которая объясняла бы все возможности их состояния. Мы знаем; что стекло - это твердое вещество, получившееся в результате охлаждения расплава. Но оно перешла в твердое состояние как-то «неправильно», не согласуясь с нашими представлениями о затвердевании жидкостей. В стекле нет « », характерной для кристаллических веществ. Мы не находим в нем регулярного повторения одних и тех же структурных элементов? В то же время полного хаоса в массе стекла тоже нет, оно изотропно, его средняя структура одинакова во всех направлениях. Сложность проблемы усугубляется еще тем, что различные стекла имеют самый различный химический состав и «умудряются» при это обладать весьма похожими свойствами.

Существующие взгляды на структуру стекла можно разделить на две большие группы. У каждой из них есть свои защитники и противники. Нужно помнить, однако, что работы в этой области еще далеко не закончены и что всякое схематическое деление влечет с собою опасность излишне упростить проблему. (К слову о стекле, этот товар издревле был весьма необычным и имел особые требования к качеству и прочности, разумеется, в былые времена люди не могли просто так почитать в интернете отзывы о товарах как могут сделать сегодня, скажем на сайте http://ask-why.ru/otzivi/ , поэтому для проверки качества стеклянных изделий купцы средневековья имели с собой чуть ли не маленькую передвижную химическую лабораторию).

Почти классическая теория

Во главе первого лагеря стоит В. Захарпасен, выдвинувший теорию «деформированной решетки». Эта, ставшая уже почти классической, теория предполагает, что в стекле все-таки есть решетка — непрерывная система взаимосвязанных анионов и катионов. Основа такой решетки — тетраэдр кремнекислоти или ее стеклообразующей модификации. По Захарпасену, тетраэдры расположены так, что возникают «пустоты», которые у многокомпонентных стекол заполняются катионами других элементов. При медленном застывании стекла именно эти элементы, затвердевающие первыми, становятся центрами, вокруг которых располагаются тетраэдры стеклообразующей кремнекислоты.

Захарпасен считает, что без решетки невозможна упорядоченная структура сложного вещества. «Но чем же объяснить все аномалии стекла?» - спрашивают противники «почти классической» теории. Почему при переходе стекла из пластического состояния в твердое отсутствует характерный для всех других веществ «скачок», вызываемый кристаллизацией? Захарпасен и его сторонники призвали на помощь теоретическое представление о «неправильности» структурной решетки в стекле. Возьмите кристаллический кварц, говорят они, каждый тетраэдр кремнекислоти в нем расположен в строгом согласии с другими. Но превратите кварц в стекло, и решетка окажется «деформированной», отдельные тетраэдры в ней уже не будут правильно ориентированы один относительно другого. К сожалению подобная «модель» не могла объяснить многих экспериментальных фактов многих свойств стекла, и в итоге пришлось отказаться от деформированной решетки да и от решетки вообще.

«Намек» на кристаллизацию

Ученый академик А. А. Лебедев с самого начала выбрал другой путь. Он представляет себе стекло как аморфное вещество, у которого, однако, есть «намек» на кристаллизацию. Процесс остановился на стадии микрокристаллических образований, в которых настоящая кристаллическая решетка проявляется лишь частично. Эти структурные элементы Лебедев назвал «кристаллитами» - неполными, несовершенными кристаллами, которые собраны в конгломераты, составляющие основу всей структуры стекла.

Ученики Лебедева дополнили его теорию многочисленными опытами. Американские исследователи нашли, что кристаллитная теория Лебедева объясняет многие явления, не объяснимые теорией Захарпасена. Но в дальнейшем американцы столкнулись с фактами, идущими вразрез и с той и с другой теорией. Сейчас исследования продолжаются - ученые ищут общую концепцию, пригодную для всех видов стекла, для всех его свойств и во всех условиях, но эта концепция еще не родилась.

У стекла есть одно свойство - оно известно уже много столетий,- которое могло бы оказаться ключом к разгадке структуры. Стекло — это некристаллическое вещество, но у него есть склонность к кристаллизации, образно говоря, «желанно» кристаллизоваться. Способность к кристаллизации подавлена в момент перехода в твердое состояние, но в благоприятных условиях может проявиться, как только получит к этому стимул. Можно сказать, что в стекле имеются «революционные напряжения», направленные к созданию внутреннего порядка. Благоприятные условия для «революционной» перестройки структуры может создать определенная температура: область, в которой стекло окончательно кристаллизуется, стеклоделы называют критической, а сам процесс кристаллизации — расстекловыванием, или девитрификацией.

Неожиданный союзник

Девитрификация является кошмаром для каждого директора стекольного завода. Прекрасная, прозрачная, аморфная стекломасса заполняется кристалликами, «камешками», которые превращают стекло в брак.

Девитрификаци считалась вредной много столетий. Но, как это уже не раз бывало в других областях техники, стеклоделы научились управлять своим «врагом», научились использовать его в своих интересах. Так родилась технология «управляемой рекристаллизации». Этот процесс по аналогии с каталитическим синтезом (аналогии, впрочем, не совсем точной) иногда называют каталитическим центрообразованием. Катализатором, вызывающим лавину, является очень малое количество некоторых элементов, добавленное к расплаву. При определенных температурах они создают в аморфном веществе центры кристаллизации, и это приводит к образованию решетки.

Тверже стали, легче алюминия

В результате термической обработки в присутствии центрообразователей стекло перестает быть стеклом. Оно превращается: в вещество с удивительными механическими свойствами. Называют это вещество по-разному - «ситалл», «стеклокерамика» или «пирокерам».

Ситаллы называют материалом будущего, но уже сегодня они находят применение в промышленности. Они незаменимы там, где нужны износостойкие и особо легкие детали машин, работающие в тяжелых условиях, где нужен материал легко формирующийся и очень прочный. Ситаллы используют также для сварки стеклянных изделий, например, кинескопов, работающих в условиях глубокого вакуума. Область применения ситаллов поистине безгранична - от кухни (жаропрочная посуда) до космических кораблей. Вскоре мы, по-видимому, совсем привыкнем к управляемой рекристаллизации и забудем, что у его истоков стоял такой высокотеоретический вопрос - решетка Захарпасена или кристаллит Лебедева.

Продолжение следует.