Скачать презентацию на тему атомная. Презентация на тему: Атомная энергетика

Слайд 1

Осадчая Е.В.
1
Презентация к уроку "Атомная энергетика" для учащихся 9 класса

Слайд 2

2
Почему возникла необходимость использования ядерного топлива?
Растущий рост потребления энергии в мире. Природные запасы органического топлива - ограничены. Мировая химическая промышленность увеличивает объём потребления угля и нефти для технологических целей, поэтому несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к увеличению его стоимости.

Слайд 3

3
Почему необходимо развивать атомную энергетику?
Мировые энергетические ресурсы ядерного горючего превышают энергоресурсы природных запасов органического топлива. Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Проблему «энергетического голода» не решает использование возобновляемых источников энергии. Очевидна необходимость развития атомной энергетики, которая занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Слайд 4

4
Атомная энергетика

Слайд 5

5
АТОМНАЯ ЭНЕРГЕТИКА
ПРИНЦИП

Слайд 6

6
Эрнст Резерфорд
В 1937 году лорд Эрнст Резерфорд утверждал, что получение ядерной энергии в более или менее значительных количествах, достаточных для практического использования, никогда не будет возможным.

Слайд 7

7
Энрико Ферми
В 1942 г. под руководством Энрико Ферми в США был построен первый ядерный реактор.

Слайд 8

8
16 июля 1945 года в 5 часов 30 минут утра по местному времени в пустыне Аламогордо (штат Нью-Мехико, США) была испытана первая атомная бомба.
Но...

Слайд 9

9
В 1946 г. первый европейский реактор был создан в СССР под руководством И.В.Курчатова. Под его руководством был разработан проект первой в мире АЭС.
Курчатов Игорь Васильевич

Слайд 10

10
В январе 1954 года со стапелей доков ВМФ США в Гротоне (штат Коннектикут) сошла подводная лодка нового типа - атомная, которой дали имя ее знаменитой предшественницы - Nautilus.
Первая советская атомная подводная лодка К-3 " Ленинский комсомол " 1958 г.
Первая подводная лодка

Слайд 11

11
27 июня 1954 году в Обнинске была пущена первая в мире атомная электростанция мощностью 5 МВт.
Первая АЭС

Слайд 12

12
Вслед за первой АЭС в 50-ые годы сооружаются АЭС: Calder Hall-1 (1956 г., Великобритания); Shippingport (1957 г., США); Сибирская (1958 г., СССР); G-2, Маркуль (1959 г., Франция). После накопления опыта эксплуатации первенцев атомной энергетики в СССР, США, странах Западной Европы были разработаны программы сооружения головных образцов будущих серийных энергоблоков.

Слайд 13

17 сентября 1959 года в свой первый рейс вышел первый в мире атомный ледокол «Ленин», построенный на ленинградском Адмиралтейском заводе и приписанный к Мурманскому пароходству.
Первый атомный ледокол

Слайд 14

Слайд 16

16
ЯДЕРНАЯ ЭНЕРГЕТИКА
Экономия органического топлива. Малые массы горючего. Получение большой мощности с одного реактора. Невысокая себестоимость энергии. Отсутствие потребности в атмосферном воздухе.
Экологическая чистота (при правильной их эксплуатации).

Слайд 17

17
ЯДЕРНАЯ ЭНЕРГЕТИКА
Высокая квалификация и ответственность кадров. Доступность для терроризма и шантажа с катастрофическими последствиями.
недостатки
Безопасность реактора. Безопасность окружающих АЭС территорий. Особенности ремонта. Сложность ликвидации ядерного энергетического объекта. Необходимость захоронения радиоактивных отходов.

Слайд 18

18
ЯДЕРНАЯ ЭНЕРГЕТИКА

Слайд 19

19
Факты: В структуре топливно-энергетического баланса (ТЭБ) и электроэнергетики мира преобладают, соответственно, нефть (40%) и уголь (38%). В мировом ТЭБ газ (22%) занимает третье место после угля (25%), а в структуре электроэнергетики газ (16%) находится на предпоследнем месте, опережая только нефть (9%) и уступая всем остальным видам энергоносителей, включая атомную энергетику (17%).

Слайд 20

20
В России сложилась уникальная ситуация: газ доминирует как в ТЭБ (49%), так и в электроэнергетике (38%). Атомная энергия России занимает сравнительно скромное место (15%) в производстве электроэнергии по сравнению со среднемировыми показателями (17%).

Слайд 21

21
Использование мирного атома остается одним из приоритетных направлений развития российской энергетики. Несмотря на свое сравнительно скромное место в общем производстве электроэнергии по стране, атомная промышленность имеет огромное количество практических применений (создание вооружения с ядерными компонентами, экспорт технологий, освоение космоса). Количество нарушений в работе наших АЭС постоянно снижается: по количеству остановок энергоблоков Россия сегодня уступает только Японии и Германии.

Слайд 22

22
В условиях глобального кризиса энергоносителей, когда цена на нефть уже превысила отметку в $100 за баррель, развитие таких перспективных и высокотехнологичных областей, как ядерная промышленность, позволит России удержать и усилить свое влияние в мире.
07.02.2008

Слайд 2

ЦЕЛЬ:

Оценить положительные и отрицательные стороны использования ядерной энергии в современном обществе.Сформировать идеи, связанные с угрозой миру и человечеству при использовании ядерной энергии.

Слайд 3

Применение атомной энергетики

Энергия - это основа основ. Все блага цивилизации, все материальные сферы деятельности человека - от стирки белья до исследования Луны и Марса - требуют расхода энергии. И чем дальше, тем больше. На сегодняшний день энергия атома широко используется во многих отраслях экономики. Строятся мощные подводные лодки и надводные корабли с ядерными энергетическими установками. С помощью мирного атома осуществляется поиск полезных ископаемых. Массовое применение в биологии, сельском хозяйстве, медицине, в освоении космоса нашли радиоактивные изотопы.

Слайд 4

Энергетика: «ЗА»

а) Атомная энергетика является на сегодняшний день лучшим видом получения энергии. Экономичность, большая мощность, экологичность при правильном использовании. б) Атомные станции по сравнению с традиционными тепловыми электростанциями обладают преимуществом в расходах на топливо, что особо ярко проявляется в тех регионах, где имеются трудности в обеспечении топливно-энергетическими ресурсами, а также устойчивой тенденцией роста затрат на добычу органического топлива. в) Атомным станциям не свойственны также загрязнения природной среды золой, дымовыми газами с CO2, NOх, SOх, сбросными водами, содержащими нефтепродукты.

Слайд 5

АЭС, ТЭЦ, ГЭС-современная цивилизация

Современная цивилизация немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом, но перед человечеством уже маячит призрак грядущего энергетического голода из-за истощения месторождений горючих ископаемых и все больших экологических потерь при получении электроэнергии. Энергия, выделяющаяся в ядерных реакциях, в миллионы раз выше, чем та, которую дают обычные химические реакции (например, реакция горения), так что теплотворная способность ядерного топлива оказывается неизмеримо большей, чем обычного топлива. Использовать ядерное топливо для выработки электроэнергии -- чрезвычайно заманчивая идея.Преимущества атомных электростанций (АЭС) перед тепловыми (ТЭЦ) и гидроэлектростанциями (ГЭС) очевидны: нет отходов, газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ. Пожалуй, более экологичны, чем АЭС, только электростанции, использующие энергию солнечного излучения или ветра. Но и ветряки, и гелиостанции пока маломощны и не могут обеспечить потребности людей в дешевой электроэнергии - а эта потребность все быстрее растет. И все же целесообразность строительства и эксплуатации АЭС часто ставят под сомнение из-за вредного воздействия радиоактивных веществ на окружающую среду и человека.

Слайд 6

Перспективы атомной энергетики

После неплохого старта наша страна отстала от передовых стран мира в области развития атомной энергетики по всем параметрам. Конечно, от ядерной энергетики можно вообще отказаться. Тем самым будет полностью устранена опасность облучения людей и угроза ядерных аварий. Но тогда для удовлетворения потребностей в энергии придется наращивать строительство ТЭЦ и ГЭС. А это неизбежно приведет к большому загрязнению атмосферы вредными веществами, к накоплению в атмосфере избыточного количества углекислого газа, изменению климата Земли и нарушению теплового баланса в масштабах всей планеты. Между тем призрак энергетического голода начинает реально угрожать человечеству.Радиация - грозная и опасная сила, но при должном отношении с ней вполне можно работать. Характерно, что меньше всего боятся радиации те, кто постоянно имеет с ней дело и хорошо знает все связанные с ней опасности. В этом смысле интересно сравнить статистику и интуитивную оценку степени опасности различных факторов повседневной жизни. Так, установлено, что наибольшее число человеческих жизней уносят курение, алкоголь и автомобили. Между тем, по оценке людей из групп населения, различных по возрасту и образованию, наибольшую опасность жизни несут атомная энергетика и огнестрельное оружие (урон, приносимый человечеству курением и алкоголем, явно недооценивается).Специалисты, которые могут наиболее квалифицированно оценить достоинства и возможности использования ядерной энергетики, считают, что человечеству уже не обойтись без энергии атома. Ядерная энергетика - один из наиболее перспективных путей утоления энергетического голода человечества в условиях энергетических проблем, связанных с использованием ископаемого горючего топлива.

Слайд 7

Преимущества атомной энергетики

Есть очень много преимуществ атомных электростанций. Они полностью не зависят от мест добычи урана. Ядерное топливо компактно, срок его использования достаточно продолжителен. АЭС ориентированы на потребителя и становятся востребованы в тех местах, где существует острая нехватка органического топлива, а потребности в электроэнергии очень велики. Еще одним их достоинством является низкая стоимость полученной энергии, сравнительно небольшие затраты на строительство. В сравнении с тепловыми электростанциями атомные электростанции не выделяют в атмосферу такого большого количества вредных веществ, и их работа не приводит к усилению парникового эффекта. На данный момент перед учеными стоит задача повысить эффективность использования урана. Ее решают с помощью реакторов-размножителей на быстрых нейтронах (РБН). Совместно с реакторами на тепловых нейтронах они повышают энерговыработку с тонны природного урана в 20-30 раз. При полном использовании природного урана становится рентабельной его добыча из очень бедных руд и даже извлечение его из морской воды. Использование АЭС с РБН ведет к некоторым техническим трудностям, которые в данный момент пытаются решить. В качестве топлива Россия может использовать высокообогащенный уран, освободившийся в результате сокращения численности ядерных боеголовок.

Слайд 8

Медицина

Методы диагностики и терапии показали свою высокую эффективность. При облучении раковых клеток γ – лучами они прекращают своё деление. И если раковое заболевание находится на начальной стадии, то лечение является успешным Малые количества радиоактивных изотопов используются с целью диагностики. Например, при рентгеноскопии желудка используется радиоактивный барий Успешно применяются изотопы при исследовании йодного обмена щитовидной железы

Слайд 9

Самые-самые

Касивадзаки-Карива-крупнейшая АЭС в мире по установленной мощности (на 2008 год) находится в Японском городе Касивадзаки префектуры Ниигата. В эксплуатации находятся пять кипящих ядерных реакторов (BWR) и два улучшенных кипящих ядерных реакторов (ABWR), суммарная мощность которых составляет 8.212 ГигаВатт.

Слайд 10

Запорожская АЭС

Слайд 11

Альтернативное заменение АЭС

Энергия солнца. Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Сев. Технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.

Слайд 12

Тепло земли. Геотермальная энергия - в дословном переводе значит: земли тепловая энергия. Объём Земли составляет примерно 1085 млрд.куб.км и весь он, за исключением тонкого слоя земной коры, имеет очень высокую температуру. Если учесть ещё и теплоемкость пород Земли, то станет ясно, что геотермальная теплота представляет собой, несомненно, самый крупный источник энергии, которым в настоящее время располагает человек. Причём это энергия в чистом виде, так как она уже существует как теплота, и поэтому для её получения не требуется сжигать топливо или создавать реакторы.

Слайд 13

Преимущества водо-графитовых реакторов

Преимущества канального графитового реактора состоят в возможности использования графита одновременно в качестве замедлителя и конструкционного материала активной зоны, что допускает применение технологических каналов в сменяемом и несменяемом вариантах, использование твэлов в стержневом или трубчатом исполнении с односторонним или всесторонним охлаждением их теплоносителем. Конструктивная схема реактора и активной зоны позволяет организовать перегрузку топлива на работающем реакторе, применить зональный или секционный принцип построения активной зоны, допускающий профилирование энерговыделения и теплосъема, широкое использование типовых конструкций, реализацию ядерного перегрева пара, т. е. перегрева пара непосредственно в активной зоне.

Слайд 14

Ядерная энергетика и окружающая среда

На сегодняшний день ядерная энергетика и её влияние на окружающую среду являются самыми актуальными вопросами на международных съездах и собраниях. Особенно остро этот вопрос стал звучать после аварии на Чернобыльской атомной электростанции (ЧАЭС). На подобных съездах решаются вопросы, связанные с монтажными работами на АЭС. А также вопросы, затрагивающие состояние рабочего оборудования на данных станциях. Как известно работа атомных электростанций основывается на расщеплении урана на атомы. Поэтому добыча этого топлива для станций также является не маловажным вопросом на сегодняшний день. Многие вопросы, касающиеся атомных электростанций, так или иначе связаны с окружающей средой. Хотя работа атомных электростанций приносит большое количество полезной энергии, но, к сожалению, все «плюсы» в природе компенсируются своими «минусами». Атомная энергетика не исключение: в работе атомных электростанций сталкиваются с проблемами утилизации, хранения, переработки и транспортировки отходов.

Слайд 15

Насколько опасна ядерная энергетика?

Атомная энергетика - активно развивающаяся отрасль. Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран - достаточно распространенный элемент на Земле. Но следует помнить, что атомная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов.

Слайд 16

Энергетика: «против»

«против» атомных станций: а) Ужасные последствия аварий на АЭС. б) Локальное механическое воздействие на рельеф - при строительстве. в) Повреждение особей в технологических системах - при эксплуатации. г) Сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты. д) Изменение характера землепользования и обменных процессов в непосредственной близости от АЭС. е) Изменение микроклиматических характеристик прилежащих районов.

Слайд 17

Не только радиация

Эксплуатация АЭС сопровождается не только опасностью радиационного загрязнения, но и другими видами воздействия на окружающую среду. Основным является тепловое воздействие. Оно в полтора-два раза выше, чем от тепловых электростанций. При работе АЭС возникает необходимость охлаждения отработанного водяного пара. Самым простым способом является охлаждение водой из реки, озера, моря или специально сооруженных бассейнов. Вода, нагретая на 5-15 °С, вновь возвращается в тот же источник. Но этот способ несет с собой опасность ухудшения экологической обстановки в водной среде в местах расположения АЭС.Большее применение находит система водоснабжения с использованием градирен, в которых охлаждение воды происходит за счет ее частичного испарения и охлаждения. Небольшие потери пополняются постоянной подпиткой свежей водой. При такой системе охлаждения в атмосферу выбрасывается огромного количество водяного пара и капельной влаги. Это может привести к увеличению количества выпадающих осадков, частоты образования туманов, облачности.В последние годы стали применять систему воздушного охлаждения водяного пара. В этом случае нет потерь воды, и она наиболее безвредна для окружающей среды. Однако такая система не работает при высокой средней температуре окружающего воздуха. Кроме того, себестоимость электроэнергии существенно возрастает.

Слайд 18

Невидимый враг

Ответственность за естественную земную радиацию в основном несут три радиоактивных элемента -- уран, торий и актиний. Эти химические элементы нестабильны; распадаясь, они выделяют энергию или становятся источниками ионизирующего излучения. Как правило, при распаде образуется невидимый, не имеющий вкуса и запаха тяжелый газ радон. Он существует в виде двух изотопов: радон--222, член радиоактивного ряда, образуемого продуктами распада урана-238, и радон-220 (называемый также торон), член радиоактивного ряда тория-232. Радон постоянно образуется в глубинах Земли, накапливается в горных породах, а затем постепенно по трещинам перемещается к поверхности Земли.Облучение от радона человек очень часто получает, находясь у себя дома или на работе и не подозревая об опасности, -- в закрытом, непроветриваемом помещении, где повышена его концентрация этого газа -- источника радиации.Радон проникает в дом из грунта -- сквозь трещины в фундаменте и через пол -- и накапливается в основном на нижних этажах жилых и производственных построек. Но известны и такие случаи, когда жилые дома и производственные корпуса возводят непосредственно на старых отвалах горнодобывающих предприятий, где радиоактивные элементы присутствуют в значительных количествах. Если в строительстве производстве применяют такие материалы как гранит, пемза, глинозем, фосфогипс, красный кирпич, кальциево-силикатный шлак, источником радоновой радиации становится материал стен.Природный газ, используемый в газовых плитах (особенно сжиженный пропан в баллонах) -- тоже потенциальный источник радона. А если воду для бытовых нужд выкачивают из глубоко залегающих водяных пластов, насыщенных радоном, то высокая концентрация радона в воздухе даже при стирке белья! Кстати, было установлено, что средняя концентрация радона в ванной комнате, как правило, в 40 раз выше, чем в жилых комнатах и в несколько раз выше, чем на кухне.

Слайд 19

Радиоактивный «мусор»

Даже если атомная электростанция работает идеально и без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому людям приходится решать очень серьезную проблему, имя которой -- безопасное хранение отходов. Отходы любой отрасли промышленности при огромных масштабах производства энергии, различных изделий и материалов создают огромной проблемой. Загрязнение окружающей среды и атмосферы во многих районах нашей планеты внушает тревогу и опасения. Речь идет о возможности сохранения животного и растительного мира уже не в первозданном виде, а хотя бы в пределах минимальных экологических норм.Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты и перегоревшие лампочки из радиоактивных помещений, отработавшее оборудование, пыль, газовые фильтры и многое другое.

Слайд 20

Борьба с радиоактивным мусором

Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Их смешивают с цементом и превращают в блоки или вместе с горячим битумом заливают в стальные емкости.Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой "мусор" превращать в стекло и керамику. Для этого отходы прокаливают и сплавляют с веществами, образующими стеклокерамическую массу. Рассчитано, что для растворения 1 мм поверхностного слоя такой массы в воде потребуется не менее 100 лет.В отличие от многих химических отходов, опасность радиоактивных отходов со временем снижается. Бoльшая часть радиоактивных изотопов имеет период полураспада около 30 лет, поэтому уже через 300 лет они почти полностью исчезнут. Так что для окончательного удаления радиоактивных отходов необходимо строить такие долговременные хранилища, которые позволили бы надежно изолировать отходы от их проникновения в окружающую среду до полного распада радионуклидов. Такие хранилища называют могильниками.

Слайд 21

Взрыв на Чернобыльской АЭС 26 апреля 1986 года.

25 апреля 4-й энергоблок был остановлен для планового ремонта, на время которого было запланировано несколько испытаний оборудования. В соответствии с программой мощность реактора была понижена, и тут начались проблемы, связанные с явлением «ксенонового отравления» (накоплением изотопа ксенона в реакторе, работающем на пониженной мощности, еще больше тормозящим работу реактора). Для компенсации отравления были подняты поглощающие стержни, начался рост мощности. Что произошло дальше, в точности не ясно. В докладе Международной консультативной группы по ядерной безопасности отмечено: «Достоверно не известно, с чего начался скачок мощности, приведший к разрушению реактора Чернобыльской АЭС». Этот внезапный скачок попытались заглушить, опустив поглощающие стержни, однако из-за их неудачной конструкции замедлить реакцию не удалось, и произошел взрыв.

Слайд 22

Чернобыль

Анализ Чернобыльской аварии убедительно подтверждает, что радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизни деятельности людей на территориях, подвергающихся радиоактивному загрязнению.

Слайд 23

Японский Чернобыль

Недавно произошел взрыв на АЭС Фукусима 1 (Япония) из-за сильного землетрясения. Авария на атомной электростанции «Фукусима» стала первой катастрофой на атомном объекте, обусловленной воздействием, хотя и косвенным, природной стихии. До сих пор крупнейшие аварии имели «внутренний» характер: их причиной являлось сочетание неудачных элементов конструкции и человеческого фактора.

Слайд 24

Взрыв в Японии

На станции "Фукусима-1", расположенной в одноименной префектуре, 14 марта взорвался водород, скопившийся под крышей третьего реактора. По данным компании Tokyo Electric Power Co (TEPCO) - оператора АЭС. Япония проинформировала Международное агентство по атомной энергии (МАГАТЭ) о том, что в результате взрыва на АЭС "Фукусима-1" радиационный фон в районе аварии превысил допустимую норму.

Слайд 25

Последствия радиации:

Мутации Раковые заболевания (щитовидной железы, лейкоз, молочной железы, легкого, желудка, кишечника) Наследственные нарушения Стерильность яичников у женщин. Слабоумие

Слайд 26

Коэффициент чувствительности ткани при эквивалентной дозе облучения

  • Слайд 27

    Результаты радиации

  • Слайд 28

    Заключение

    Факторы «За» атомные станции: 1. Атомная энергетика является на сегодняшний день лучшим видом получения энергии. Экономичность, большая мощность, экологичность при правильном использовании. 2. Атомные станции по сравнению с традиционными тепловыми электростанциями обладают преимуществом в расходах на топливо, что особо ярко проявляется в тех регионах, где имеются трудности в обеспечении топливно-энергетическими ресурсами, а также устойчивой тенденцией роста затрат на добычу органического топлива. 3. Атомным станциям не свойственны также загрязнения природной среды золой, дымовыми газами с CO2, NOх, SOх, сбросными водами, содержащими нефтепродукты. Факторы «Против» атомных станций: 1. Ужасные последствия аварий на АЭС. 2. Локальное механическое воздействие на рельеф - при строительстве. 3. Повреждение особей в технологических системах - при эксплуатации. 4. Сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты. 5. Изменение характера землепользования и обменных процессов в непосредственной близости от АЭС. 6. Изменение микроклиматических характеристик прилежащих районов.

    Посмотреть все слайды

    Прав ли был Прометей, давший людям огонь, Мир рванулся вперёд, Мир сорвался с пружин, Из прекрасного лебедя вырос дракон Из запретной бутылки выпущен джин...

    Атомная энергия используется в качестве источника электрической энергии. Первый атомный реактор был построен в декабре 1942 года в городе Чикаго (США) под руководством итальянского физика Энрико Ферми. Этот реактор создавался в условиях строжайшей секретности, так как конечной целью его работы было изготовление тех самых атомных бомб, которые потом сбросили на мирных жителей городов Хиросима и Нагасаки. Бомбы назывались "Малыш" (г. Хиросима, массой 4100 кг, начиненная 7 кг урана -235) и "Толстяк" (г. Нагасаки, массой 4500 кг, начиненная 1,3 кг плутония -239). Примерно в то же время в СССР возобновились работы физиков по овладению энергии атома, прерванные нападением фашистов. Руководил научными исследованиями И.В. Курчатов. 27 июня 1954 года в СССР была пущена первая атомная электростанция в городе Обнинске Калужской Области. Ее мощность была 5 МВт.

    Атомные электростанции (АЭС)Государственный университет управления
    Институт управления в промышленности, энергетике
    и строительстве
    Атомные электростанции
    (АЭС)
    Фаюстов Анатолий Афанасьевич
    к.э.н., доцент кафедры управления инновациями
    в реальном секторе экономики
    2013 годАтомные электростанции (АЭС)
    Классификация АЭС по виду
    отпускаемой энергии
    Классификация АЭС по типу реакторов
    Принцип работы АЭС
    Характеристики ВВЭР-1000
    АЭС России
    Плавучая атомная электростанция
    (ПАТЭС)
    Источники информации
    2

    Атомные электростанции (АЭС)

    Атомные
    электростанции
    предназначенны для выработки
    электрической энергии путём
    использования энергии, выделяемой при
    контролируемой ядерной реакции.
    Виды АЭС:
    АЭС, использующие реакции деления
    АЭС, использующие реакции термоядерного
    синтеза (еще не существуют)
    3

    Преимущества АЭС:
    - Отсутствие вредных выбросов
    - Выбросы радиоактивных веществ в несколько раз
    ниже, чем у ТЭС
    - Небольшой объём используемого топлива,
    возможность использования его после переработки
    -Высокая мощность: 1000-1600 МВт на один
    энергоблок
    - Стоимость энергии ниже, чем у ТЭС
    4

    Проблемы АЭС:
    - Топливо опасно, требует сложных и дорогих
    мер по переработке и хранению
    - Срок эксплуатации АЭС низок (30-35 лет)
    - Существует вероятность аварий и их
    тяжелые последствия
    - Высокая стоимость монтажа АЭС и её
    инфраструктуры, а также её демонтажа
    - Сложность выбора места для строительства
    (не везде можно построить)
    - Проблема захоронения
    радиоактивных отходов продолжает
    оставаться актуальной
    5

    Классификация АЭС по виду вырабатываемой энергии

    Атомные электростанции по виду
    вырабатываемой энергии можно разделить
    на:
    Атомные электростанции (АЭС),
    предназначенные для выработки только
    электроэнергии
    Атомные теплоэлектроцентрали (АТЭЦ),
    вырабатывающие как электроэнергию, так и
    тепловую энергию
    Атомные станции теплоснабжения (АСТ),
    вырабатывающие только тепловую энергию
    В оглавление
    6

    Классификация АЭС по типу реакторов

    Атомные электростанции классифицируются в
    соответствии с установленными на них реакторами:
    Реакторы на тепловых нейтронах, использующие
    специальные замедлители для увеличения
    вероятности поглощения нейтрона ядрами атомов
    топлива
    Реакторы на лёгкой воде (ВВЭР)
    Графитовые реакторы (РМБК)
    Реакторы на тяжёлой воде
    Реакторы на быстрых нейтронах (БН)
    Субкритические реакторы, использующие внешние
    источники нейтронов
    Термоядерные реакторы (не существуют)
    В оглавление
    7

    Получение электроэнергии на АЭС

    На АЭС электроэнергия вырабатывается
    посредством электромашинных генераторов,
    приводимых во вращение паровыми турбинами.
    Пар получается за счет деления изотопов
    урана или плутония в ходе управляемой цепной
    реакции, протекающей в ядерном реакторе.
    Теплоноситель, циркулирующий через
    охлаждающий тракт активной зоны реактора,
    отводит выделяющуюся теплоту реакции и
    непосредственно либо через теплообменники
    используется для получения пара, который
    подается на турбины.
    8

    Принцип работы АЭС

    Энергия, выделяемая в активной зоне
    реактора, передаётся теплоносителю первого
    контура. Далее теплоноситель подаётся
    насосами в теплообменник (парогенератор),
    где нагревает до кипения воду второго
    контура. Полученный при этом пар поступает
    в турбины, вращающие электрогенераторы.
    На выходе из турбин пар поступает в
    конденсатор, где охлаждается большим
    количеством воды, поступающим из
    водохранилища.
    9

    Схема работы АЭС с (ВВЭР)

    В оглавление
    10

    Характеристики ВВЭР-1000 (Водо-водяной энергетический реактор)

    Тепловая мощность реактора - 1000 МВт
    К. п. д., 33,0 %
    Давление пара перед турбиной - 60,0 атм
    Давление в первом контуре - 160,0 атм
    Температура воды:
    - на входе в реактор - 289 °С
    - на выходе из реактора - 324 °С
    Диаметр активной зоны - 3,12 м
    Высота активной зоны - 3,50 м
    Диаметр ТВЭЛа - 9,1 мм
    Число ТВЭЛов в кассете - 312
    Загрузка урана - 66 т
    Среднее обогащение урана - 3,3 - 4,4 %
    Среднее выгорание топлива – 40 МВтсут/кг
    11

    Действующие АЭС России

    № п/п
    Наименования атомных
    станций
    Общая
    электрическая
    мощность, МВт
    Количество и тип
    реакторов
    1.
    Кольская АЭС
    1760
    4хВВЭР-440
    2.
    Ленинградская АЭС
    4000
    4хРМБК-1000
    3.
    Калининская АЭС
    3000
    3хВВЭР-1000
    4.
    Смоленская АЭС
    3000
    3хРМБК-1000
    5.
    Курская АЭС
    4000
    4хРМБК-1000
    6.
    НововоронежскаяАЭС
    1834
    2хВВЭР-440
    1хВВЭР-1000
    7.
    Балаковская АЭС
    4000
    4хВВЭР-1000
    8.
    Волгодонская АЭС
    1000
    1хВВЭР-1000
    9.
    Белоярская АЭС
    600
    1хБН-600
    10.
    Билибинская АЭС
    48
    4хЭКП-12
    12

    Крупнейшие АЭС России
    -Ленинградская (мощность
    4000 МВт)
    -Калининская (мощность
    3000 МВт)
    - Курская (мощность 4000 МВт)
    - Смоленская
    (мощность 3000 МВт)
    13

    Проектируемые атомные станции

    Нижегородская
    Плавучая
    Калининградская
    Северская
    Тверская
    14

    Машинный зал АЭС

    15

    Машинный зал

    16

    Центральный зал АЭС

    17

    Реакторный зал АЭС

    18

    Загрузка тепловыделяющих элементов

    19

    Тепловыделяющая сборка

    20

    Градирни (Нововоронежская АЭС)

    21

    Градирни

    22

    БИЛИБИНСКАЯ АТОМНАЯ ТЕПЛО-ЭЛЕКТРОЦЕНТРАЛЬ. Магаданская область. Машинный зал

    23

    Плавучая атомная электростанция (ПАТЭС) (Проект)

    Плавучая атомная электростанция
    малой мощности (АСММ) состоит из
    гладкопалубного несамоходного судна
    ледокольного типа с двумя реакторными
    установками КЛТ-40С. Длина судна - 144
    метра, ширина - 30 метров.
    Водоизмещение - 21,5 тысячи тонн.
    Плавучая станция может использоваться
    для получения электрической и тепловой
    энергии, а также для опреснения морской
    воды. В сутки она может выдать от 100 до
    400 тысяч тонн пресной воды.
    24

    География планируемого размещения ПАТЭС в России

    25

    Чернобыльская авария- крупнейшая
    из аварий на АЭС
    Произошла 26 апреля 1986 года
    на Чернобыльской АЭС,
    расположенной на территории
    Украины (г. Припять)
    Разрушенный 4-й энергоблок (вид с вертолета)
    26

    Радиоактивное облако от аварии
    распространилось
    над европейской
    частью СССР,
    Восточной
    Европой,
    Скандинавией,
    Великобританией
    и восточной
    частью США
    27

    Последствия аварии:
    - 30-километровая
    зона отчуждения
    - мутирование живых
    организмов
    - катастрофические
    разрушения
    28

    Источники информации

    1.
    2.
    3.
    4.
    Википедия (http://ru.vikipedia.org/viki/)
    http://solar-battarey.narod.ru
    http://www.krugosvet.ru
    http://slovari.yandex.ru
    В начало