Фотообъектив. Разрешающая сила

Разрешающая сила объектива

Среди советских фотоаппаратов есть аппараты ФЭД, которые выпускались в двух вариантах: с объективом «Индустар-26М» и «Индустар-61». Если сравнить основные технические характеристики этих объективов, то никакой разницы мы не обнаружим. Оба объектива имеют совершенно одинаковые фокусные расстояния и одинаковые относительные отверстия. Одинакова и конструкция обоих объективов. Между тем аппарат с «Индустаром-61» стоит дороже, чем с «Индустаром-26М». Чем это объясняется?

Разница, между этими объективами состоит в том, что в объективе «Индустар-61» (рис. 20) две линзы из четырех (первая и последняя) изготовлены из лантанового стекла .

Рис. 20. Оптическая система объектива «Индустар-61». Линзы, очерченные жирным контуром, изготовлены из лантанового стекла

Линзы, изготовленные из оптического стекла, в состав которого входит окись лантана, позволяют улучшить одно из важных свойств объектива - его разрешающую силу.

Разрешающей силой фотографического объектива называют способность объектива давать раздельные резкие изображения мельчайших деталей фотографируемого объекта. Чем выше разрешающая сила объектива, тем меньшие по размерам детали он может четко воспроизвести на фотоснимке.

Разрешающая сила объектива определяется при помощи точной съемки так называемых мир - штриховых таблиц. Эти таблицы фотографируют с сильным уменьшением при наибольшем действующем отверстии объектива, а затем просматривают их изображение на негативе через микроскоп и по числу линий, раздельно передаваемых объективом, судят о его разрешающей силе.

Показателем разрешающей силы объектива служит число линий, раздельно передаваемых объективом в 1 мм в плоскости изображения. Эти данные заносят в технический паспорт объектива.

Разрешающая сила объектива в центре кадра (поля) всегда выше, чем по краям, поэтому в паспорте указываются два ее значения: для центра и для краев поля.

Современные объективы обладают очень большой разрешающей силой - порядка сотен линий на миллиметр, но при фотографировании мир изображение их воспроизводится светочувствительным слоем пленки, который имеет зернистую структуру и поэтому не дает возможности полностью использовать разрешающую силу объектива. Она практически получается меньшей, и именно это ее меньшее значение указывается в техническом паспорте объектива. Запись в паспорте может быть, например, такой: «Разрешающая сила в центре поля - 30 лин/мм , по краям поля - 14 лин/мм ».

Даже самые простые объективы дают в центре поля 20-22 лин/мм , а у хороших разрешающая сила еще больше.

Чтобы иметь представление о том, насколько велика подобная разрешающая сила, достаточно сказать, что здоровый человеческий глаз с расстояния наилучшего зрения (25-30 см) может различить в одном миллиметре не более десяти линий.

Как видите, современный фотографический объектив в несколько раз зорче глаза.

Высокая разрешающая сила объектива несомненно играет важную роль в практической фотографии. Появляется возможность очень четко передать на фотоснимке такие мелкие детали, как листья растений и т. п. С таких негативов можно делать значительно увеличенные фотоотпечатки без существенной потери резкости.

Разрешающая сила лантанового объектива «Индустар-61» выше, чем объектива «Индустар-26М». Надо, однако, знать, что при наибольшем отверстии объектива разрешающая сила может быть практически использована только при очень точной наводке на резкость во время съемки. При малейших нарушениях этого условия, а это случается довольно часто, разрешающая сила объектива практически не используется. Поэтому при покупке фотоаппарата или отдельного объектива не стоит обращать внимания на разрешающую силу объектива. Она всегда больше чем достаточна для получения резких снимков. Гораздо важнее производить во время съемки точную наводку на резкость.

В заключение главы еще раз напомним, что фотографический объектив - весьма точный оптический прибор, требующий осторожного и бережного обращения. Ни в коем случае не разбирайте сами объектив, не вывинчивайте его линз. Вы не сможете собрать его с необходимой точностью. Это дело можно доверить только опытному специалисту, работающему в ремонтной мастерской.

И еще одно напоминание. Линзы современных объективов изготовляются из специальных сортов оптического стекла, при варке которого обычно не удается избежать образования мелких газовых пузырьков. Такие пузырьки могут оказаться и в объективе купленного вами аппарата. Наличие их не оказывает влияния на качество работы объектива, и пусть это вас не волнует.

Из книги История диджеев автора Брюстер Билл

Из книги Кто держит паузу автора Юрский Сергей Юрьевич

Из книги Искусство оформления сайта. Практическое пособие автора Бердышев Сергей Николаевич

Из книги Великие загадки мира искусства автора Коровина Елена Анатольевна

Из книги Цифровая фотография без Photoshop автора Газаров Артур Юрьевич

Из книги Музеи Петербурга. Большие и маленькие автора Первушина Елена Владимировна

Из книги Партитуры тоже не горят автора Варгафтик Артём Михайлович

Из книги Тайнопись искусства [Сборник статей] автора Петров Дмитрий

Хрупкая сила святыни. Владимирская икона Божьей Матери (Ольга Наумова) Она прошла через все испытания нашей истории. Видела основание нового русского государства - сначала Владимиро-Суздальского, потом Московского. Видела нашествие Тамерлана и других завоевателей.

Из книги Учимся фотографировать автора Эртон Дэни

Насколько объектив резкий? Насколько четкое изображение он может дать? На этот вопрос отвечает разрешающая способность объектива . Мы уже сталкивались с понятием разрешения в контексте цифрового изображения . Мы выяснили, что чем выше разрешение цифрового изображения, тем оно более качественное, более детализированное. В случае с объективом все то же самое. Чем выше его разрешающая способность, тем более детализированную картинку можно получить с этого объектива. Однако, разрешение объектива измеряется совсем иначе, не в количестве точек (как в случае с цифровым изображением). Ведь объектив проецирует на матрицу фотоаппарата изображение, не разбитое на мелкие элементы-пиксели. И его разрешение поэтому измерить сложнее. Тем более, резкость объектива будет зависеть от диафрагмы, на которой ведется съемка, а в случае с зум-объективами, еще и от выбранного фокусного расстояния. Чтобы дать общую характеристику резкости объектива, проводится целое лабораторное исследование, а по его итогам составляются так называемые графики MTF. О том, как читают графики MTF, а также с самими графиками по каждому объективу Nikon, можно ознакомиться на официальном сайте Nikon: https://nikoneurope-ru.custhelp.com/app/answers/detail/a_id/27512

Однако фотограф работает не в лабораторных условиях, и на резкости итогового изображения влияет масса побочных факторов как технического характера (например, высокое ISO, неправильная выдержка, неточность фокусировки, нехватка глубины резкости), так и прочие обстоятельства. Например, передняя линза объектива может быть загрязнена, при ярком солнце объектив может поймать блик, резкость объектива может портить защитный светофильтр или другие насадки, при фотографировании на улице может быть смог или туман, очень часто резкость кадров портится некорректной компьютерной обработкой.

Поэтому лучше всего о резкости объектива судить не по графикам, а по корректно снятым фотографиям с этого объектива. Ведь оценивать свои фотографии мы будем не математически, а собственными глазами и чувствами.

В интернете сегодня очень много примеров снимков с любой оптики. Их можно найти как на официальных сайтах производителей объективов, так и в тестах , на популярных фотохостингах. Например, на сайте Pixel-Peeper.com собраны миллионы снимков, сделанных пользователями фотохостинга Fliсkr на ту или иную фототехнику.

Кстати, посмотрев в интернете примеры снимков на тот или иной объектив, мы еще раз убедимся в том, что даже на самый качественный объектив можно снять плохой кадр - всё зависит от навыков фотографа. Чтобы оценить резкость изображения по фотопримерам, стоит обратить внимание как на центр кадра, так и на его края. В центре кадра объектив всегда имеет самое высокое разрешение, тогда как к его краям оно может заметно снижаться. В самом факте небольшого снижения резкости к краю кадра нет ничего страшного: в конце концов на самом краю фотографии редко располагают значимые объекты. При оценке резкости объектива стоит иметь в виду, что при максимально открытой диафрагме резкость изображения зачастую не так высока, как при F8-F11. На более закрытых диафрагмах резкость опять начинает постепенно снижаться. Поэтому не стоит без необходимости использовать диафрагмы F16-F32.

Если разрешающей способности объектива будет не хватать при практическом его использовании, при полном увеличении снимков мы увидим, что даже с абсолютно точной фокусировкой они будут давать не совсем резкое изображение. Часто в таком случае фотографы говорят “объектив мылит”. “Мылят” частенько самые простые, недорогие объективы, например “китовые”, поставляющиеся в комплекте с камерой. Безусловно, и на “китовую” оптику можно получать прекрасные снимки, однако продвинутые фотографы предпочитают по мере возможности сменить их на более совершенные модели объективов в зависимости от своих задач.

Сравним на фотопримере резкость трех объективов разных классов: зума начального уровня, профессионального зум-объектива и фикс-объектива. Мы выбрали типичных представителей каждого класса, так что результаты сравнения будут в той или иной мере характерны для всех представителей этих категорий оптики. Все кадры сделаны на фотоаппарат Nikon D5300 при диафрагме F8, то есть на пике резкости данных объективов. Сравним фрагменты из центра изображения при 100% увеличении.

Каждый фотограф решает для себя сам: какой резкости ему достаточно для своих задач и выбирает соответствующую оптику . О выборе оптики для тех или иных видов фотосъемки мы поговорим еще не раз в следующих уроках. Уже сейчас можно ознакомиться с материалами рубрики “Как это снято?” , чтобы увидеть какими объективами снимают в тех или иных ситуациях.

Субъективные характеристики: “Рисунок” объектива и красота боке

Эти характеристики называются субъективными потому, что их нельзя измерить и оцениваются фотографами исходя из собственных вкусов и творческого опыта. Множество фотографов, особенно занятых не творческой, а технической фотографией вообще не интересуют такие понятия как “рисунок” и боке.

Поскольку каждая модель объектива имеет ту или иную оптическую систему, проецируемое ими на матрицу изображение может различаться не только по резкости, но и по своему художественному характеру. Такой характер изображения, даваемого объективом, фотографы называют “рисунком”. С понятием рисунка соседствует понятие “боке”. Боке - зона нерезкости на фото. Различные объективы дают различное боке. Характер боке зависит от оптической системы объектива и от устройства его механизма диафрагмы. Считается, что чем круглее будет отверстие диафрагмы, тем приятнее получится боке и тем более правильную форму будут иметь круглые блики от точечных источников света на фоне. Производители часто устанавливают в объектив специальные скругленные лепестки диафрагмы для получения красивого боке.

Понятия рисунок и боке чаще всего используются применительно к светосильной оптике и объективам с постоянным фокусным расстоянием, так как считается, что такие объективы обладают ярко выраженным, характерным рисунком. У какого объектива красивее рисунок и лучше боке - решает каждый фотограф сам для себя.

Устройство объектива фотоаппарата и органы управления.

Разберемся с тем, какие детали и органы управления расположены на объективе и зачем они нужны.

    Байонетное крепление. При помощи него объектив устанавливается на фотоаппарат.

    Название объектива. Чуть ниже мы научимся расшифровывать все обозначения, используемые в названиях объективов Nikon.

    Переключатель между автоматической (A) и ручной (M) фокусировкой объектива.

    Включение и выключение оптического стабилизатора (VR - Vibration Reduction) объектива. Имеется только на объективах, оснащенных этим самым стабилизатором.

    Кольцо фокусировки. Необходимо для ручной фокусировки объектива.

    Шкала выбранного фокусного расстояния. Есть на большинстве зум-объективов, за исключением самых простых. На объективах с постоянным фокусным расстоянием тоже отсутствует за ненадобностью.

    Кольцо зумирования. Имеется только у зум-объективов. Необходимо для смены фокусных расстояний объектива (а вместе с этим и угла обзора объектива).

    Крепление для бленды. Бленда - это своеобразный “козырёк”, защищающий его переднюю линзу от бликов, которые могут возникнуть при съемке на ярком солнце. Помимо этого, бленда может выполнять защитную функцию, делая переднюю линзу объектива более труднодоступной для пальцев рук и защищая ее от физических повреждений при падении объектива.

    Резьба для установки светофильтров на объектив. Каждый объектив имеет определенный диаметр резьбы. Измеряется этот диаметр в миллиметрах: 52 мм, 67 мм, 72 мм, 77 мм. Под каждый диаметр резьбы выпускаются специальные светофильтры. Самый распространенный светофильтр - защитный. Его функция - защищать переднюю линзу объектива от механических повреждений. Светофильтрам будет посвящен отдельный урок, ведь это весьма обширная тема. Как узнать диаметр резьбы под светофильтр вашего объектива? Обычно он написан рядом с его передней линзой. Если же вдруг там он не написан, всегда можно найти характеристики объектива в интернете или инструкции к нему. Помимо этого, можно посмотреть на обратную сторону крышки от объектива. На них часто указан диаметр.

10.Шкала дистанции фокусировки. Есть не на всех объективах. Помогает понять, на какую дистанцию сейчас сфокусирован объектив. Особенно полезна при предметной, пейзажной фотосъемке.

Читаем название объектива. Технологии объективов Nikon

Какое фокусное расстояние у объектива, какая светосила? Подойдет ли он к вашей фотокамере? Всё это можно узнать из названия объектива. Научимся его читать. Прежде всего, в названии объектива указан производитель. Объективы производства компании Nikon называются Nikkor - это фирменное название семейства оптики. В названии объектива это слово может употребляться наравне с названием фирмы-производителя.

Остальное название объектива строится из аббревиатур, обозначающих те или иные технологии и стандарты, и числовых характеристик: фокусное расстояние и светосила.

Мы уже знаем, что фокусное расстояние объектива обозначается в миллиметрах. В случае с зум-объективами указывается самое короткое и самое длинное фокусное расстояние данного через тире. Например: “18 - 55мм”. Если перед нами фикс-объектив, то и его фокусное расстояние обозначается одним числом. Например: “50 мм”. Светосила объектива, как и фокусное расстояние, может быть постоянной и переменной. У некоторых зум-объективов встречается переменная светосила. Тогда так же через черточку указывается светосила объектива при самом коротком фокусном расстоянии и на самом длинном. К примеру: F/3.5-5.6. Если же объектив обладает постоянной светосилой, светосила обозначается одним числом. Например: “F/1.4”.

Среди аббревиатур в названии современного объектива от Nikon могут использоваться следующие:

AF (Autofocus) - автофокусные объективы без встроенного мотора для автоматической фокусировки. Используют мотор, встроенный в фотокамеру. Не все современные фотоаппараты имеют встроенный мотор для фокусировки: у бюджетных аппаратов Nikon его нет.

Такие объективы называются “отверточными”, как и фотокамеры, обладающие встроенным мотором фокусировки. Такое название получено из-за того, что привод автофокуса, выглядывающий из байонета фотоаппарата, похож на отвертку. Этот привод крутит специальный “винтик” на объективе, тем самым перемещая группы линз и наводя объектив на резкость.

Если такой объектив будет установлен на фотокамеру без встроенного привода фокусировки, автофокус не будет работать. Будет возможна только ручная фокусировка.

На сегодня встроенный привод фокусировки имеют фотокамеры начиная с Nikon D7100 и старше: Nikon D600, Nikon D610, Nikon D750, Nikon D800, Nikon D800E, Nikon D810, Nikon D4, Nikon D4s.

Не имеют встроенный привод фокусировки камеры младше Nikon D7100: Nikon D3200, Nikon D3300, Nikon D5200, Nikon D5300 и другие.

На сегодня “отверточные” объективы считаются практически устаревшими, все новые объективы оснащаются собственными моторами и имеют аббревиатуру “AF-S”.

AF-S (AF-Silent Wave Motor) - автофокусный объектив со встроенным мотором автофокуса. При использовании такого объектива автофокус будет работать на любой цифровой зеркальной фотокамере Nikon.

SWM (Silent Wave Motor) - ультразвуковой мотор фокусировки. Используется в объективах стандарта AF-S.

G (G-type) - Объективы без кольца управления диафрагмой. Кольцо управления не нужно при использовании современных фотоаппаратов, поэтому от него решили избавиться. Однако, объективы серии G не получится использовать на старых, полностью механических фотоаппаратах типа Nikon FM3a, Nikon FM10

Micro (Macro) - предназначенные для макросъемки объективы. Обладают короткой минимальной дистанцией фокусировки, что позволяет снимать предметы очень крупным планом.

PC-E (Perspective Control) - тилт-шифт объективы, объективы с коррекцией перспективы.

ED - в объективе использованы специальные линзы для снижения хроматических аберраций.

AS - в объективе используются асферические линзы.

IF (Internal focus) - объектив с внутренней фокусировкой. При фокусировке передняя линза объектива остается неподвижной. Таким образом повышается надежность объектива.

RF (Rear Focusing) - почти то же самое, что IF. Только фокусировка осуществляется задними оптическими элементами с малым весом, а значит занимает меньше времени.

DC (Defocus Control) - функция контроля зоны нерезкости. Включив ее, можно добиться более красивого боке.

VR (Vibration Reduction) - очень важная функция: стабилизатор изображения.

N (Nano Crystal Coat) - за счет нанесения на линзы объективы нанокристаллов уменьшается подверженность объектива к бликам, получается более контрастное изображение.

AF-D, D (AF-Distance Information) - объективы, передающие камере информацию о дистанции до объекта. Сегодня эта возможность есть у всех объективов. Объективы, маркирующиеся аббревиатурами AF-D и D - это не самые новые объективы.

DX - объектив разработан для камер с матрицами формата APS-C. Объектив проецирует изображение небольшого размера, как раз для уменьшенной матрицы APS-C. Так что если поставить его на камеру с полнокадровой матрицей (а это вполне возможно), по краям кадра будет очень сильное затемнение. Современные полнокадровые камеры Nikon имеют режим совместимости с DX-оптикой. В таком режиме фотокамера будет получать изображение не со всей площади матрицы, а с области, равной по площади матрице формата APS-C. То есть никакого виньетирования (затемнения краев) не будет, но и полнокадровый аппарат превратиться в кроп-камеру.

FX - объектив, разработанный для использования с полнокадровыми фотоаппаратами. В полной мере может использоваться и с камерами APS-C.

CX - объективы, разработанные для использования с фотокамерами системы Nikon 1. Несовместимы с зеркальными аппаратами Nikon, имеющими байонет Nikon F.

Теперь мы запросто сможем расшифровать названия объективов Nikkor, узнать об их основных характеристиках, технологиях и стандартах.

Подробнее с технологиями и аббревиатурами, использующимися в названиях объективов можно познакомиться на сайте Nikon: http://www.nikon.ru/ru_RU/product/nikkor-lenses/glossary

На этом тема изучения объективов не окончена. В следующих уроках нам предстоит узнать как классифицируются объективы по углу обзора, как меняется передача пространства и перспективы на объективах с различным фокусным расстоянием, как работать с глубиной резкости.

Разрешающая сила объектива

Всякий оптический прибор (фотоаппарат, телескоп, человеческий глаз в том числе) имеет некоторое входное отверстие, через которое свет поступает в прибор, создает изображение и затем анализируется. Изображение объекта в приборе определяется не только потоком излучения, идущего от объекта, но и свойствами самого прибора. Некоторые мелкие детали реального объекта оказываются отсутствующими в его изображении.

Излучение, приходящее от объекта, всегда можно рассматривать состоящим из излучения отдельных светящихся точек его поверхности. Поэтому рассмотрим ситуацию (рисунок 3), когда на непрозрачный экран с круглым отверстием (входное отверстие) падает плоская волна (от удаленного точечного источника). В этом случае будет наблюдаться дифракция Фраунгофера от круглого отверстия. Дифракционную картину можно наблюдать с помощью линзы, поместив в ее фокальной плоскости экран. Вследствие дифракции света на входном отверстии дифракционная картина имеет вид светлого пятна, окруженного дифракционными кольцами. Соответствующие расчеты показывают, что подавляющая часть светового потока попадает в центральное светлое пятно, и угловое расстояние на первый дифракционный минимум, если диметр отверстия

,(18)

Подавляющая часть светового потока попадает в область центрального пятна. Дифракционная картина не зависит от расстояния между отверстием и линзой и не изменится при их совмещении. Следовательно, самая совершенная линза не может дать идеального оптического изображения . Изображение светящейся точки, даваемое линзой, имеет вид пятнышка, являющегося центральным максимумом дифракционной картины. Угловой размер пятнышка уменьшается с ростом диаметра оправы линзы.

При малом угловом расстоянии между светящимися точками их изображения сливаются. Если dl минимальное угловое расстояние, при котором точки воспринимаются раздельно, то разрешающей силой прибора называется . В частности для объектива .

Что важнее: качественная фотокамера или объектив? Руководствуясь постулатом прошлых лет - «снимает не камера, снимает объектив» ответ был однозначным: при желании улучшить разрешающую силу системы «фотокамера + объектив» фотограф отдавал предпочтение качественному объективу. Так ли это сейчас, в эпоху цифровой фотографии? Фотокамера имеет несколько параметров качества: дисторсия, аберрация, дифракция, боке, пластичность рисунка. В статье рассматривается только один параметр – разрешающая сила, то есть способность передать в фотографии некоторое количество различимой информации. Передавать отчетливо, резко или чётко, как говорят некоторые.

Терминология

Фотоаппарат состоит из двух основных частей: фотокамеры (body) и объектива. То есть, в этой статье, фотоаппарат не то же самое, что и фотокамера. Изображения составных фотоаппарата я возьму в каталоге где найду исследуемые объективы и фотокамеры. Данные по разрешающей способности фотоаппаратов найдутся на сайтах www.photozone.de и www.dxomark.com.

Разрешающая сила : возможность различить две отдельные точки. Чем меньше расстояние между точками, и при этом они не сливаются в одно пятно, тем выше разрешение фотоаппарата. По-простому говоря, чем выше разрешение фотоаппарата, тем больше информации будет содержаться в фотоснимке, лучше различаются мелкие детали и выше резкость изображения. Разрешающая сила фотоаппарата складывается из разрешающей силы матрицы и разрешающей силы объектива.

Тест MTF50 самый распространенный тест для оценки качества изображения в фотографии. Разрешающая сила определяется фотографированием штриховой шкалы или миры . Штриховая мира это лист бумаги, на котором напечатаны чередующиеся тёмные и светлые полоски с изменяющейся частотой. Чем более тонкие штрихи способен передать фотоаппарат, тем выше его разрешающая способность. Оценивать качество изображения мы будем по количеству различимых полосок помещающихся в высоту кадра. Чем тоньше будут различимые полоски, тем больше таких полосок мы увидим, тем выше качество фотосистемы в целом. Чтобы не усложнять расчеты, я буду использовать лучшее значение разрешающей силы.

Исходные данные . Предположим, мы имеем слабую, всего 8 мегапикселов, фотокамеру Canon 350D и слабый объектив Canon EF-S 18-55mm f/3.5-5.6 IS. Попробуем определить, какие вложения будут эффективны для улучшения такого фотоаппарата:

  • увеличить количество мегапикселов матрицы фотокамеры;
  • использовать более качественный оптику;
  • перейти на полнокадровую (фулфрейм) камеру.

Наращивание мегапикселов

Что произойдет с разрешением, если увеличить количество мегапикселов с 8,2 (у Canon 350D) до 15,5 (например, у Canon 500D)? Количество пикселей матрицы увеличится в 1,89 раза, вероятно, следует ожидать пропорциональный рост увеличения разрешающей способности фотоаппарата. На сайте PHOTOZONE.DE я вижу, что разрешение нашей системы увеличилось с 2164 линий (рис. 1) до 2440 (рис. 2) по высоте кадра, то есть в 1,13 раза по одной стороне матрицы, а по всей матрице: 1,13 2 = 1,28. Прирост 28%, против ожидаемых 89%, как же так?

Для того чтобы ответить на этот вопрос, я поискал информацию о разрешающей способности объектива Canon 18-55. На сайте Dxomark.com было обнаружено, что его разрешающая сила соответствует 8 мегапикселов информации (строка Sharpness на рисунке 3). Сколько бы мы не наращивали мегапикселов в матрице, ограничителем резкости системы будет именно слабый объектив. Собственно, в фотоаппарате «Canon 350D + Canon 18-55» разрешение матрицы соответствует разрешающей силе оптики, такая система является сбалансированной.

Вывод: наращивание мегапикселов при объективе Canon 18-55 даст эффект, но не столь значительный, как ожидалось. Купив более качественный объектив, разрешающая сила фотоаппарата Canon 350D будет ограничиваться уже матрицей с небольшим числом мегапикселов. Подтверждением этому служит иллюстрация 1-4: с хорошим объективом Canon EF 50mm f/1.4 мы получим близкий с Canon 18-55 результат. Это же подтверждает и сайт g-foto.ru, показывая результат 2100 линий для системы «Canon 350D + Canon EF 50mm f/1.4». Улучшение данной системы практически невозможно.

Улучшаем объектив

Слава богу, что современные камеры не столь слабы, как Canon 350D, и скорей всего вы имеете «на борту» больше мегапикселов, например, Canon EOS 500D с матрицей на 15,5 мп. Напомню, что с такой матрицей Canon 18-55 выдавал разрешение 2164 линии. Попробуем найти для камеры более качественный объектив. Canon EF-S 17-85mm f/4-5.6 USM IS «выдаст на гора» 2556 линий по высоте кадра (рис. 4), то есть в 1,18 раза больше. А по всей площади кадра мы получим прирост количества информации в 1,18 2 = 1,4 раза. Очень не дурно… Собственно говоря, это всё, что мы сможем добиться от Canon 500D. Даже самая качественная оптика на этой фотокамере даёт схожие значения разрешающей силы. Например, очень резкий Canon EF 35mm f/2 USM IS, дает с нашей фотокамерой аж 2638 линий по высоте кадра (рис. 5), популярный Canon EF 50mm f/1.4 показал 2600 линий (рис. 6), а профессиональные зуммы показали результат, схожий с «любительским» Canon 17-85mm.

Вывод: для современных камер с «кропнутой» матрицей оптимальным и по цене и по качеству использовать объектив, схожий по разрешающей силе с Canon 17-85. Использование дорогих профессиональных объективов даст едва ощутимый прирост количества информации в кадре.

Хотим больше!

Canon EF 24-105mm f/4 USM L IS непафосный, но хороший объектив, рабочая лошадка профессионального фотографа. На камере с кропнутой 15-ти мегапиксельной матрице она дает нам 2488 линий по высоте кадра (рис. 7). Но на полноформатном Canon 5D Mk II он выдаст 3400(!) линий (рис. 8). То есть количество информации по всей площади кадра увеличится в 1,37 2 = 1,86 раза. Очень хорошо!

Почему получился такой прирост? Все дело в размере матрицы. Предположим, что у нас есть объектив, который выдает 100 линий/мм. В «кропнутой» матрице таких миллиметров 15 (по высоте), значит, матрица сможет принять на себя 100х15 = 1500 линий. В полноформатной фотокамере высота матрицы 24 мм., и на матрицу будет передано уже 2400 линий. Это гигантское преимущество матриц большого размера.

Вывод: можно, конечно, купить к кропнутой фотокамере очень хороший профессиональный объектив, но полностью он проявит себя только на полноформатной фотокамере.

Еще больше?

Дальнейшее наращивание мегапикселов на полноформатной матрице вновь упрется в качество оптики. Уже 30-ти мегапиксельные камеры, чтобы раскрыться во всей своей красе, требуют самых лучших, самых дорогих объективов. Это не только дорого, но еще и неудобно, ибо от зумм-объективов, скорей всего, придется отказаться. Второй вариант наращивания резкости камеры – переход на среднеформатные матрицы, например Hasselblad с матрицей 53х40 мм. Но это совсем другая, фантастическая история.

Изображения.

Разрешающая способность объектива оценивается по количеству воспроизводимых штрихов на 1 мм изображения, которое тот способен спроецировать на фоточувствительный элемент (плёнку или матрицу цифровой камеры). Само собой разумеется, что при этом снимаемый объект находится в фокусе, а не в зоне резкого изображения для данного объектива. Измерения разрешающей способности проводят с помощью специальных мир .

Энциклопедичный YouTube

    1 / 1

    ✪ Разрешающая способность дифракционной решетки. ЭНП

Субтитры

Неоднородности разрешающей силы

Разрешающая сила объективов неоднородна по полю изображения, обычно уменьшаясь к краям изображения. Это обусловлено наличием у объектива внеосевых аберраций (кома , астигматизм), которые не наблюдаются в центре поля.

Разрешающая сила у объективов одинаковой конструкции уменьшается с увеличением главного фокусного расстояния: у короткофокусных (широкоугольных) она выше, чем у длиннофокусных.

Для каждого объектива существует относительное отверстие (диафрагма), при котором его разрешающая сила максимальна. Это обусловлено тем, что сначала при диафрагмировании происходит улучшение изображения за счет уменьшения аберраций , а потом ухудшение за счёт дифракции .

Для определения оптимальной по разрешающей силе диафрагмы для конкретного объектива следует обратиться к результатам тестов. В целом, с ростом максимальной разрешающей способности её максимум смещается в сторону более открытой диафрагмы.

Фотографические объективы служат для получения изображения на фотоматериале или цифровой матрице , которые также обладают определённой разрешающей способностью. Поэтому для полного использования разрешающей силы объектива следует использовать его с соответствующими фотоматериалами или матрицами, разрешающая способность которых равна или выше разрешающей способности объектива, так как разрешающая способность системы объектив + светочувствительный элемент заведомо не выше разрешения каждого компонента.

Методы определения

Для определения разрешающей силы объектива используют различного вида ми́ры - испытательные таблицы с нанесёнными на них штрихами различной ширины и длины.

Разрешающая сила объектива по ГОСТ в СССР измерялась в линиях на 1 мм, она всегда больше в центральной части изображения и меньше на его краях. Современные данные могут оперировать иным способом оценки числа линий, когда учитываются как чёрные, так и белые линии. Разрешение при этом численно удваивается, не меняясь по сути.

Разрешающая способность системы объектив + светочувствительный элемент приближенно определяется по формуле:

1 R S = 1 R O + 1 R E {\displaystyle {\frac {1}{R_{S}}}={\frac {1}{R_{O}}}+{\frac {1}{R_{E}}}} ,

где R O {\displaystyle R_{O}} – разрешающая сила объектива в линиях на 1 мм; R E {\displaystyle R_{E}} - разрешающая сила светочувствительного элемента в линиях на 1 мм. Данная формула непригодна для матричных фотоприемников в связи с их дискретным характером.