Легированные стали основные легирующие элементы в сталях. Элементы легирующие

Легировать сталь научились ещё в XIX веке – учёный Мюшетт изобрёл состав стали, содержащий 1,85% углерода, 9% вольфрама и 2,5% марганца, она использовалась для получения резцов, применяемых в .

Сталь для массового производства появилась благодаря разработкам английского металлурга Роберта Гадфильда. Легирование стали позволило получить состав: 1,0–1,5% углерода и 12–14% марганца, она отличалась повышенной износостойкостью и хорошим качеством литья. Эта марка практически без изменений сохранилась до наших дней.

Легированная сталь обладает большей прочностью, коррозионной стойкостью и пластичностью.

Стали имеют определённую классификацию в зависимости от структуры и области применения.

По структуре делятся на классы:

  • мартенситный (основная структура металла);
  • мартенситно-ферритный (структура содержит мартенсит + 10% феррита);
  • ферритный;
  • аустенитно-мартенситный (стали с комбинированной структурой аустенита и мартенсита, количество которых можно менять в больших пределах);
  • аустенитно-ферритный (структура: аустенит с содержанием феррита более 10%);
  • аустенитный (устойчивая структура аустенита).

По процентному соотношению легирующих добавок сталь подразделяют на:

  • низколегированную – 5–10%;
  • среднелегированную – 10%;
  • высоколегированную – более 10%.

Дополнительная классификация

Легированные конструкционные сплавы подходят для изготовления деталей машин и механизмов в машиностроительной отрасли – производят крупногабаритные детали, которые закаляют и подвергают высокому отпуску. Большая часть легирующих добавок в стали повышают прокаливаемость. Внедрение добавок должно быть достаточным, но не чрезмерным. Большая степень легирования может вызвать:

  • снижение пластических свойств;
  • развитие отпускной хрупкости;
  • снижение порога хладноломкости.

Исключение – никель, он смещает порог хладноломкости в область низких температур, поэтому для машин, работающих в условиях Севера, механизмы изготавливают из никельсодержащих сталей. Пружинная легированная сталь содержит 0,5–0,7% углерода, а в качестве добавок вводят хром, молибден и вольфрам. Такой состав должен обеспечивать высокое сопротивление малым пластическим деформациям и высокой усталостной стойкости.

Шарикоподшипниковые – относят к заэвтектоидным – углерод около 1% с дополнительным легированием металла хромом (1,3–1,65%). В теплостойких подшипниках хром увеличивают до 5%. К подшипниковым – предъявляют особые требования по металлургической чистоте. Применение рафинирующих переплавов, вакуумные способы переплавки, обработка синтетическими шлаками позволяют уменьшить долю и размер неметаллических включений, тем самым повышают сопротивление контактной усталости.

Инструментальные виды

Легированная инструментальная сталь предназначается для производства металлорежущего инструмента, эксплуатируемого при режимах с высокой скоростью резания и для изготовления штампового инструмента.

Быстрорежущие стали способны сохранять высокую твёрдость и износостойкость режущей кромки инструмента. В такую сталь добавляют молибден, ванадий, вольфрам, хром и кобальт.

Штамповые стали для холодной деформации с содержанием 1,0–2,0% углерода обладают износостойкостью и ударной вязкостью. Их легируют хромом до 12%, ванадием, вольфрамом, молибденом.

Штамповые стали для горячей деформации содержат углерод в пределах 0,3–0,5%, обладают высокой теплостойкостью, ударной вязкостью, сопротивлением термической усталости. В качестве добавок вводят вольфрам, молибден, ванадий.

Основные цели легирования

Слово «легирование» происходит от немецкого «legieren» (связывать, соединять). Положительное воздействие легирующих компонентов на свойства стали связано с обеспечиванием протекания двух физико-химических процессов.

Образование термодинамических устойчивых растворов замещения, сопровождающееся замещением части атомов (ионов) железа в его кристаллической решётке (ионами) легирующего элемента. Это ведёт к искажению кристаллической решётки железа, поскольку радиусы ионов (катионов) легирующих элементов отличаются от радиуса катионов железа, что повышает твёрдость и прочность железа с сохранением его пластичности.

Возникновение прочных и практически нерастворимых в жидком железе химических соединений между введёнными в расплавленный металл легирующими добавками и растворёнными в нём неметаллами (кислород, азот, сера, углерод и др.).

Результатами образования таких соединений являются:

  • снижение остаточного содержания в расплавленном металле растворенных неметаллов, ухудшающих его качество;
  • уменьшение общего объёма вредных примесей (растворённых и в виде неметаллических включений) в стали.

А также происходит выделение (выпадение) из жидкого металла таких мелких неметаллических включений, которые служат центрами кристаллизации и приводят к получению мелкозернистой первичной и вторичной структуры стали. Благодаря этому она имеет лучшую пластичность, малую анизотропность свойств после прокатки и т. д. Выделяющиеся во время кристаллизации мелкие неметаллические включения обладают склонностью скапливаться на поверхности растущих кристаллов, понижая скорость роста граней, а это, в свою очередь, уменьшает зернистость стали.

Основным способом легировать сталь является метод объёмного металлургического легирования. Заключается в сплавлении основного элемента с легирующими в печах разного вида (индукционные, вакуумно-дуговые, тигельные, конвертеры, дуговые, плазменные, и др.). При этом способе возможна существенная потеря активных веществ (марганца, хрома, молибдена, и др.).

Существуют также:

  • механическое легирование;
  • восстановление;
  • электролиз;
  • плазмохимическая реакция.

Механическое легирование выполняют в аттриторах – барабанах, в центре которых находится вал с кулачками. В них закладывают порошкообразные компоненты для получения нужного сплава. Во время вращения кулачки «ударяют» по смеси, и происходит «вбивание» легирующих добавок в основу.

При совместном восстановлении перемешивают оксиды элементов сплава с восстановителем, например, с гидридом кальция (СаН 2) и производят нагрев. Идёт реакция восстановления оксидов до металлов, синхронно происходит процесс диффузии, выравнивающий состав сплава. Полученный оксид кальция (СаО) промывают водой, а сплав (в виде порошка) идёт в следующую обработку. Металлотермическое восстановление подразумевает использование металлов (магния, кальция, алюминия и др.) в качестве восстановителей.

С помощью поверхностного легирования поверхности изделия придают особые свойства. На верхний слой наносится определённый элемент или сплав в виде небольшого пласта, затем на неё воздействуют с помощью энергии (лазерного излучения, плазмы, тока высокой частоты др.) - поверхность оплавляется, и на ней формируется новый сплав.

Разница между легированием и примесями

Обычные легирующие добавки - это компоненты, которые вводят в металл в значительных количествах - более 0,10%. Они вызывают изменение кристаллической решётки железа, образуя растворы внедрения, повышают прочностные и других свойства железа (матрицы).

В качестве металлов для легирования используют:

  • хром Cr;
  • марганец Mn;
  • никель Ni;
  • алюминий Al;
  • молибден Mo;
  • кобальт Co;
  • титан Ti;
  • цирконий Zr;
  • медь Cu и другие.

Их внедряют в сталь в разных количествах и сочетаниях.

Примеси

Существует деление вредных примесей на обычные и остаточные. К обычным вредным примесям относят те, содержание которых в металле можно уменьшить во время плавки – это фосфор, сера, кислород, азот, углерод, т. е., неметаллы.

Под остаточными вредными примесями принято понимать такие, содержание которых невозможно снизить во время плавки ни при окислительном рафинировании, ни при обычном легировании. Это характерно для химических элементов, имеющих растворимость в жидком железе. В производственной практике обычно встречающимися вредными остаточными примесями являются:

  • никель;
  • олово;
  • сурьма;
  • мышьяк.

Маркировка легированных сталей

В России и СНГ действует система обозначения марок, состоящая из букв и цифр.

Обозначения конструкционных легированных сплавов

Маркировка такой стали состоит из цифр и букв. Буквы – это основные легирующие добавки, цифры после каждой из букв показывают содержание обозначенного элемента, округлённого до целого числа (если содержание легирующего компонента – до 1,5%, то цифра за буквой не пишется). Содержание углерода в процентах, умноженное на 100, пишется в начале наименования стали.

Маркировка основных легирующих компонентов:

Элемент Обозначение
Н
Кобальт К
Молибден М
Хром Х
Марганец Г
Бор Р
Медь Д
Цирконий Ц
Фосфор П
Кремний С
Ниобий Б
Вольфрам В
Титан Т
Азот А (в середине наименования)
Ванадий Ф
Алюминий Ю
Редкоземельные металлы Ч

Если сталь с ограничением содержанием и фосфора P <0,03% и является высококачественной, в конце маркировки указывают «А». Высококачественные стали, полученные электрошлаковым переплавом, имеют маркировку в конце наименования с буквой «Ш» через тире, например, 18ХГ-Ш.

В начале названия указывается буква «А». Если в качестве легирующей добавки идёт свинец, то маркировка будет начинаться с «АС». Для отображения других элементов, действует тот же порядок, что и для конструкционных легированных сталей.

Маркировка подшипниковых

Маркировка у них, как у легированных, только с «Ш» в начале. У стали, полученной электрошлаковым переплавом, добавляют «Ш» в окончании названия через тире. Например, ШХ8-Ш.

Обозначения инструментальных легированных

Маркируются аналогично конструкционным легированным сталям. Процентное содержание углерода указывается в начале маркировки, но отличается тем, что умножается не на 100, а на 10. Если содержание углерода менее 1%, то цифру в начале названия марки стали не указывают.

Маркировка быстрорежущих

Они маркируются в начале наименования буквой «Р» и цифрой, указывающей на содержание вольфрама в стали, затем следуют буквы и цифры других легирующих элементов.

Маркировка коррозионно-стойких

Коррозионно-стойкие (нержавеющие), жаростойкие и жаропрочные имеют в обозначении цифры и записываются так же, как маркировка конструкционных легированных сталей. У литейных добавляется «Л».

В строительстве, промышленности и некоторых направлениях сельского хозяйства можно наблюдать активное применение металлических изделий. Причем один и тот же металл в зависимости от сферы использования раскрывает разные технико-эксплуатационные свойства. Объяснить это можно процессами легирования. Технологической процедуры, в рамках которой базовая заготовка обретает новые качества или улучшается по имеющимся характеристикам. Этому способствуют активные элементы, легирующие свойства которых вызывают химические и физические процессы изменения металлической структуры.

Основные легирующие элементы

Большое, но неоднозначное значение в процессах легирования имеет углерод. С одной стороны, его концентрация в структуре металла порядка 1,2% способствует повышению прочности, твердости и уровня хладноломкости, а с другой - он же снижает теплопроводность и плотность материала. Но даже не это главное. Как и все элементы легирующие, его добавляют при выполнении технологической переработки под сильным температурным воздействием. Однако, далеко не все примеси и активные компоненты сохраняются в структуре после завершения операции. Как раз углерод может оставаться в металле и в зависимости от требуемых характеристик конечного изделия технологи принимают решение о доработке металла или сохранении его текущих качеств. То есть они варьируют уровень содержания углерода посредством специальной операции легирования.

Также в перечень основных элементов легирования можно внести кремний и марганец. Первый вносится в целевую структуру в минимальном проценте (не более 0,4%) и особого влияния на изменение качеств заготовки не оказывает. Тем не менее этот компонент, как и марганец имеет существенное значение как раскисляющее и связующее вещество. Эти свойства легирующих элементов обуславливают базовую целостность структуры, которая еще в процессе легирования делает возможным органичное восприятие других, уже активных элементов и примесей.

Вспомогательные легирующие элементы

В данную группу элементов обычно включают титан, молибден, бор, ванадий и т.д. Наиболее заметным представителем этого звена является молибден, который чаще используют в хромистых сталях. В частности, с его помощью повышается прокаливаемость металла, а также снижается порог хладоломкости. Полезно для строительных марок сталей и применение молибденовых компонентов. Это эффективные легированные элементы в стали, которые обеспечивают динамическую и статическую прочность металлов, устраняя при этом риски внутреннего окисления. Что касается титана, то его применяют нечасто и только для одной задачи - измельчения структурных зерен в хромомарганцевых сплавах. Целенаправленными можно назвать также добавки кальция и свинца. Их используют для металлических заготовок, которые в дальнейшем подвергаются операциям резки.

Классификации элементов легирования

Помимо весьма условного разделения легирующих элементов на основные и вспомогательные, также применяются и другие, более точные признаки различия. Например, по механике воздействия на характеристики сплавов и сталей элементы делятся на три категории:

  • Оказывающие влияние с образованием карбидов.
  • С полиморфными превращениями.
  • С формированием интерметаллических соединений.

Важно учитывать, что в каждом из трех случаев влияние легирующих элементов на свойства интерметаллидов также зависит от сторонних примесей. Например, значение может иметь концентрация того же углерода или железа. Также существует классификация уже элементов полиморфного превращения по характеру воздействия. В частности, выделяются элементы, которые допускают наличие в сплаве легированного феррита, а также их аналоги, способствующие стабилизации оптимального содержания аустенита независимо от температуры.

Влияние легирования на сплавы и стали

Можно выделить несколько направлений, по которым могут быть улучшены качественные характеристики стали. В первую очередь это физические качества, определяющие технический ресурс материала. Легирование в этой части позволяет увеличить прочность, пластичность, прокаливаемость и твердость. Другим направление положительного влияния от легирующих элементов является улучшение защитных свойств. В этом плане стоит выделить сопротивляемость ударам, красностойкость, жаропрочность и высокий порог коррозийного поражения. Для некоторых сфер применения металлы готовят и с учетом электрохимических качеств. В данном случае элементы легирующие могут использоваться для повышения электро- и теплопроводности, сопротивления окислению, магнитопроницаемости и т. д.

Особенности влияния вредных примесей

Типичными представителями вредных примесей являются фосфор и сера. Что касается фосфора, то он при условии соединения с железом способен формировать хрупкие зерна, которые сохраняются после легирования. В итоге полученный сплав утрачивает высокую степень плотности, а также наделяется хрупкостью. Впрочем, соединение с углеродом дает и положительную характеристику, улучшая процесс отделения стружки. Это качество облегчает процессы механической обработки. Сера, в свою очередь, является еще более опасным веществом. Если влияние легирующих элементов на сталь в целом призвано улучшать сопротивляемость материала внешним воздействиям, то данная примесь нивелирует эту группу качеств. Например, ее высокая концентрация в структуре приводит к увеличению истираемости, снижению сопротивления усталости металла и минимизации коррозионной стойкости.

Технология выполнения легирования

Обычно легирование выполняется в рамках металлургического производства и представляет собой внесение в шихту или массу расплава дополнительных элементов, которые рассматривались выше. В результате термической обработки в структуре происходят химические и физические процессы соединения отдельных веществ, а также деформации. Таким образом, элементы легирующие позволяют улучшать качества металлургических изделий.

Заключение

Легирование является сложным технологическим процессом изменения характеристик металла. Сложность его главным образом заключается в первичном подборе оптимальных рецептов для достижения желаемого набора свойств заготовки. Как уже говорилось, влияние легирующих элементов разнопланово и неоднозначно. Один и тот же компонент активной добавки может, например, одновременно улучшать прочность металла и ухудшать его теплопроводность. Задача технологов заключается в разработке выигрышных комбинаций элементов, которые позволят сделать металлическую деталь или конструкцию наиболее приемлемой по своим качествам с точки зрения использования в конкретных целях.

Легирующие элементы – химические элементы, специально вводимые в сталь для получения заданных свойств. Улучшают , физические и химические свойства основного материала.

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной стали. хромистых сталей — (0…-100) o С.

Дополнительные легирующие элементы:

  • Бор — 0.003%. Увеличивает прокаливаемость, а такхе повышает порог хладоломкости (+20…-60 o С .
  • Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60) o С.
  • Титан (см. ) (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.
  • Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снижает до –20…-120 o С . Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к сталей, содержащих никель.
  • Ванадий в количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает и .
  • Введение в хромистые стали никеля , значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). Хромоникелевые стали, обладают наилучшим комплексом свойств. Однако никель является дефицитным, и применение таких сталей ограничено.Значительное количество никеля можно заменить медью, это не приводит к снижению вязкости.

При легировании хромомарганцевых сталей кремнием получают, стали – хромансиль (20ХГС, 30ХГСА) . Стали обладают хорошим сочетанием прочности и , хорошо свариваются, штампуются и обрабатываются резанием.Кремний повышает ударную вязкость и температурный запас вязкости.

Добавка свинца, кальция – улучшает обрабатываемость резанием. Применение упрочнения улучшает комплекс .

Распределение легирующих элементов в стали.

Легирующие элементы растворяются в основных железоуглеродистых сплавов (феррит, аустенит, цементит), или образуют специальные карбиды. Растворение легирующих элементов в Fe α происходит в результате замещения атомов железа атомами этих элементов. Эти атомы создают в решетке напряжения, которые вызывают изменение ее периода. Изменение размеров решетки вызывает изменение свойств феррита – прочность повышается, пластичность уменьшается. Хром, молибден и вольфрам упрочняют меньше, чем никель, кремний и марганец. Молибден и вольфрам, а также кремний и марганец в определенных количествах, снижают вязкость.

В сталях карбиды образуются металлами, расположенными в таблице Менделеева левее железа (хром, ванадий, ), которые имеют менее достроенную d – электронную полосу.

В процессе карбидообразования углерод отдает свои валентные электроны на заполнение d – электронной полосы атома металла, тогда как у металла валентные электроны образуют металлическую связь, обуславливающую металлические свойства карбидов.

При соотношении атомных радиусов углерода и металла более 0,59 образуются типичные химические соединения: Fe 3 C, Mn 3 C, Cr 23 C 6 , Cr 7 C 3 , Fe 3 W 3 C – которые имеют сложную кристаллическую решетку и при нагреве растворяются в аустените.

При соотношении атомных радиусов углерода и металла менее 0,59 образуются фазы внедрения: Mo 2 C, WC, VC, TiC, TaC, W 2 C – которые имеют простую и трудно растворяются в аустените.

Физические и химические свойства сплава. Для изменения различных свойств (повышения твёрдости, износостойкости, коррозионной стойкости и т. д.) приповерхностного слоя металлов и сплавов применяются также и разные виды поверхностного легирования. Легирование проводится на различных этапах получения металлического материала с целями повышения качества металлургической продукции и металлических изделий.

При изготовлении специальных видов стекла и керамики часто производится поверхностное легирование. В отличие от напыления и других видов покрытия, добавляемые вещества диффундируют в легируемый материал, становясь частью его структуры.

Цели легирования

Основная цель - изменить тип проводимости и концентрацию носителей в объёме полупроводника для получения заданных свойств (проводимости, получения требуемой плавности pn-перехода). Самыми распространёнными легирующими примесями для кремния являются фосфор Р и мышьяк As (позволяют получить n-тип проводимости) и бор В (p-тип).

Способы легирования

В настоящее время технологически легирование производится тремя способами: ионная имплантация , нейтронно-трансмутационное легирование (НТЛ) и термодиффузия.

Ионная имплантация

Ионная имплантация позволяет контролировать параметры приборов более точно, чем термодиффузия, и получать более резкие pn-переходы. Технологически проходит в несколько этапов:

  • Загонка (имплантация) атомов примеси из плазмы (газа).
  • Активация примеси, контроль глубины залегания и плавности pn-перехода путем отжига .

Ионная имплантация контролируется следующими параметрами:

  • доза - количество примеси;
  • энергия - определяет глубину залегания примеси (чем выше, тем глубже);
  • температура отжига - чем выше, тем быстрее происходит перераспределение носителей примеси;
  • время отжига - чем дольше, тем сильнее происходит перераспределение примеси.

Нейтронно-трансмутационное легирование

При нейтронно-трансмутационном легировании легирующие примеси не вводятся в полупроводник, а образуются («трансмутируют») из атомов исходного вещества (кремний, арсенид галлия) в результате ядерных реакций , вызванных облучением исходного вещества нейтронами. НТЛ позволяет получать монокристаллический кремний с особо равномерным распределением атомов примеси. Метод используется в основном для легирования подложки, особенно для устройств силовой электроники .

Когда облучаемым веществом является кремний, под воздействием потока тепловых нейтронов из изотопа кремния 30 Si образуется радиоактивный изотоп 31 Si, который затем распадается с образованием стабильного изотопа фосфора 31 P. Образующийся 31 P создаёт проводимость n-типа.

В России возможность нейтронно-трансмутационного легирования кремния в промышленных масштабах на реакторах АЭС и без ущерба для производства электроэнергии была показана в 1980 году. К 2004 году была доведена до промышленного использования технология по легированию слитков кремния диаметром до 85 мм, в частности, на Ленинградской АЭС . .

Термодиффузия

Термодиффузия содержит следующие этапы:

  • Осаждение легирующего материала.
  • Термообработка (отжиг) для загонки примеси в легируемый материал.
  • Удаление легирующего материала.

Легирование в металлургии

История

Легирование стало целенаправленно применяться сравнительно недавно. Отчасти это было связано с технологическими трудностями. Легирующие добавки просто выгорали при использовании традиционной технологии получения стали. Поэтому для получения дамасской (булатной) стали использовали достаточно сложную по тем временам технологию.

Примечательно то, что первыми сталями , с которыми познакомился человек были природнолегированные стали. Еще до начала железного века применялось метеоритное железо , содержащее до 8,5 % никеля .

Высоко ценилось и природнолегированные стали, изготовленные из руд , изначально богатых легирующими элементами . Повышенная твёрдость и вязкость японских мечей с возможностью обеспечить остроту кромки возможно объясняются наличием в стали молибдена .

Современные взгляды о влиянии на свойство стали различных химических элементов начали складываться с развитием химии во второй четверти XIX века .

По-видимому, первым удачным использованием целенаправленного легирования можно считать изобретение в 1858 г. Мюшеттом стали, содержащей 1,85 % углерода , 9 % вольфрама и 2,5 % марганца . Сталь предназначалась для изготовления резцов металлообрабатывающих станков и явилась прообразом современной линейки быстрорежущих сталей . Промышленное производство этих сталей началось в 1871 г.

Принято считать, что первой легированной сталью массового производства стала Сталь Гадфильда , открытая английским металлургом Робертом Эбботом Гадфильдом в 1882 г . Сталь содержит 1,0 - 1,5 % углерода и 12 - 14 % марганца, обладает хорошими литейными свойствами и износостойкостью . Без особых изменений химического состава эта сталь сохранилась до настоящего времени.

Влияние легирующих элементов

Для улучшения физических, химических, прочностных и технологических свойств металлы легируют, вводя в их состав различные легирующие элементы. Для легирования сталей используются хром, марганец, никель, вольфрам , ванадий , ниобий , титан и другие элементы. Небольшие добавки кадмия в медь увеличивают износостойкость проводов, добавки цинка в медь и бронзу - повышают прочность, пластичность, коррозионную стойкость. Легирование титана молибденом более чем вдвое повышает температурный предел эксплуатации титанового сплава благодаря изменению кристаллической структуры металла. Легированные металлы могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.

Легирующие элементы вводят в сталь для повышения ее конструкционной прочности. Основной структурной составляющей в конструкционной стали является феррит , занимающий в структуре не менее 90 % по объему . Растворяясь в феррите, легирующие элементы упрочняют его. Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель. Молибден, вольфрам и хром влияют слабее. Большинство легирующих элементов, упрочняя феррит и мало влияя на пластичность , снижают его ударную вязкость (за исключением никеля). Главное назначение легирования: повышение прочности стали без применения термической обработки путем упрочнения феррита, растворением в нем легирующих элементов; повышение твердости, прочности и ударной вязкости в результате увеличения устойчивости аустенита и тем самым увеличения прокаливаемости; придание стали специальных свойств, из которых для сталей, идущих на изготовление котлов, турбин и вспомогательного оборудования, особое значение имеют жаропрочность и коррозионная стойкость . Легирующие элементы могут растворяться в феррите или аустените, образовывать карбиды , давать интерметаллические соединения, располагаться в виде включений, не взаимодействуя с ферритом и аустенитом, а также с углеродом. В зависимости от того, как взаимодействует легирующий элемент с железом или углеродом, он по-разному влияет на свойства стали. В феррите в большей или меньшей степени растворяются все элементы. Растворение легирующих элементов в феррите приводит к упрочнению стали без термической обработки. При этом твердость и предел прочности возрастают, а ударная вязкость обычно снижается. Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. Критические точки легированных сталей смещаются в зависимости от того, какие легирующие элементы и в каких количествах присутствуют в ней. Поэтому при выборе температур под закалку , нормализацию и отжиг или отпуск необходимо учитывать смещение критических точек.

Марганец и кремний вводятся в процессе выплавки стали для раскисления , они являются технологическими примесями. Марганец вводят в сталь до 2 %. Он распределяется между ферритом и цементитом. Марганец заметно повышает предел текучести, порог хладноломкости , прокаливаемость стали, но делает сталь чувствительной к перегреву. В связи с этим для измельчения зерна с марганцем в сталь вводят карбидообразующие элементы. Так как во всех сталях содержание марганца примерно одинаково, то его влияние на сталь разного состава остается неощутимым. Марганец повышает прочность, не снижая пластичности стали.

Альтернативная версия написанного выше:

Кремний не является карбидообразующим элементом, и его количество в стали ограничивают до 2 %. Он значительно повышает предел текучести и прочность стали и при содержании более 1 % снижает вязкость, пластичность и повышает порог хладноломкости . Кремний структурно не обнаруживается, так как полностью растворим в феррите , кроме той части кремния, которая в виде окиси кремния не успела всплыть в шлак и осталась в металле в виде силикатных включений.

Маркировка легированных сталей

Марка легированной качественной стали в России состоит из сочетания букв и цифр, обозначающих её химический состав. Легирующие элементы имеют следующие обозначения: хром (Х), никель (Н), марганец (Г), кремний (С), молибден (М), вольфрам (В), титан (Т), тантал (ТТ), алюминий (Ю), ванадий (Ф), медь (Д), бор (Р), кобальт (К), ниобий (Б), цирконий (Ц), селен (Е), редкоземельные металлы (Ч). Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента содержится 0,8-1,5 %, за исключением молибдена и ванадия (содержание которых в солях обычно до 0.2-0.3 %) А также бора (в стали с буквой Р его должно быть до 0.010 %). В конструкционных качественных легированных сталях две первые цифры показывают содержание углерода в сотых долях процента.

Пример: 03Х16Н15М3Б - высоколегированная качественная сталь, которая содержит 0,03 % C, 16 % Cr, 15 % Ni, до 3 % Mo, до 1,0 % Nb

Отдельные группы сталей обозначаются несколько иначе:

  • Шарикоподшипниковые стали маркируют буквами (ШХ), после которых указывают содержания хрома в десятых долях процента;
  • Быстрорежущие стали (сложнолегированые) обозначаются буквой (Р), следующая цифра обозначает содержание вольфрама в процентах;
  • Автоматные стали обозначают буквой (А) и цифрой обозначают содержание углерода в сотых долях процента.

Примеры использования

  • Стали
    • Хромистые стали;
    • Хорошо известные стали ШХ15 (устаревшее обозначение марки), используемые в качестве материала для подшипников;
    • Так называемые «нержавеющие стали »;
    • Стали и сплавы, легированные молибденом, вольфрамом, ванадием;
    • Жаростойкие стали и сплавы.
  • Алюминий
  • Бронзы
  • Латуни
  • Стекла

См. также

Примечания

Ссылки

  • «Легирование» - статья в «Химической энциклопедии»
  • «Легирование» - статья в «Металлургическом словаре»
  • «Легирование» - статья в «Энциклопедии Кирилла и Мефодия»

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Легирование" в других словарях:

    - (нем. legieren сплавлять от лат. ligo связываю, соединяю), 1) Введение в состав металлических сплавов т. н. легирующих элементов (напр., в сталь Cr, Ni, Mo, W, V, Nb, Ti и др.) для придания сплавам определенных физических, химических или… … Большой Энциклопедический словарь

    - (нем. Legirung, от лат. ligare связывать). Сплавливание благородного металла с каким либо другим. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛЕГИРОВАНИЕ нем. Legirung, от лат. ligare, связывать. Сплавление… … Словарь иностранных слов русского языка

    - (немецкое legieren сплавлять, от латинского ligo связываю, соединяю), введение в металлический расплав или шихту элементов (например, в сталь хрома, никеля, молибдена, вольфрама, ванадия, ниобия, титана), повышающих механические, физические и… … Современная энциклопедия

Легированные стали. Основные легирующие элементы в сталях, их влияние на структуру и свойства. Промышленные стали. Их назначение, требуемые свойства, термическая обработка.

Появление и широкое распространение легированных сталей обусловлено непрерывным ростом требований, предъявляемых к материалам.

Легированными называют стали, содержащие в своем составе кроме обычных примесей специально вводимые элементы, в количестве, обеспечивающем требуемые физические и механические свойства. Эти элементы называются легирующими.

Для легирования стали применяют хром (Cr), никель (Ni), марганец (Mn), кремний (Si), вольфрам (W), молибден (Mo), ванадий (V), кобальт (Co), титан (Ti), алюминий (Al), медь (Cu) и другие элементы. Марганец считается легирующим компонентом лишь при содержании его в стали более 1 %, а кремний – при содержании более 0,8 %. Легирующие элементы либо распределяются между фазами, существующими в обычной углеродистой стали (феррит и цементит) и, таким образом, изменяют их состав и свойства, либо образуют новые фазы, характерные только для легированных сталей

(интерметаллидные соединения, специальные карбиды и т. д.).

Легирующие элементы изменяют критические точки стали и оказывают существенное влияние на кинетику фазовых превращений, протекающих в стали при термической обработке.

По характеру влияния на критические температуры полиморфного превращения железа легирующие элементы разделяются на две группы. К первой группе относятся Ni,Mn,N,Cuи другие элементы, расширяющие область существования γ - твердого раствора (рис.1а). Эти элементы сFeα иFeγ образуют твердые растворы замещения (легированный феррит и легированный аустенит), повышают точку А 4 и понижают точку А 3. При содержании некоторых элементов этой группы вышеn(рис.1а) критическая точка превращения γ-α находится ниже комнатной температуры. Такие сплавы даже при медленном охлаждении приобретают структуру γ - твердого раствора (легированного аустенита).

а)Ni,Mn,Cu,Co,N,Cи др. б)Cr,Si,W,Mo,V,Alи др.

Рис.1. Влияние легирующих элементов на критические точки железа (схема).

Ко второй группе относятся Cr,Si,W,Mo,Vи другие элементы, ограничивающие область существования γ -твердого раствора (рис.1б). Эти элементы понижают точку А 4 и повышают точку А 3 . При содержании элемента этой группы в количествах, превышающихm(рис.1б), сплавы при всех температурах вплоть до температуры плавления имеют строение α -твердого раствора (легированного феррита).

Легирующие элементы оказывают существенное влияние на положение критических точек SиEдиаграммыFe-Fe 3 C. Большинство элементов(Ni,Si,Co,Cr,W,Mn) сдвигает их влево, т.е. в сторону уменьшения содержания углерода. Сильные карбидообразующие элементы (V,Ti,Nb), наоборот, повышают содержание углерода в эвтектоиде, т.е. сдвигают точкуSвправо.

Все легирующие элементы, кроме алюминия и кобальта, увеличивают устойчивость переохлажденного аустенита (сдвигают С-образные кривые вправо) и, следовательно, уменьшают критическую скорость закалки. Поэтому закалка изделий из легированных сталей производится при относительно невысоких скоростях охлаждения (в масле или даже на воздухе).

Легирующие элементы за исключением алюминия, кобальта и кремния снижают температуру начала мартенситного превращения и тем самым способствуют увеличению количества остаточного аустенита в закаленной стали.

По отношению к углероду легирующие элементы также разделяются на две группы:

    элементы, не образующие в сталях карбидов (Ni,Si,Co,Cu,Al);

    элементы, образующие карбиды (Mn,Cr,W,Mo,V,Ti,Nbи др.).

    элементы первой группы полностью растворяются в твердом растворе (феррите, аустените). Элементы второй группы частично растворяются в твердом растворе и частично идут на образование карбидов.

Карбидообразующие элементы обладают большим, чем железо, сродством к углероду. По возрастанию сродства к углероду, а следовательно устойчивости карбидных фаз, карбидообразующие элементы располагаются в следующий ряд: Fe-Mn-Cr-Mo-W-V-Nb-Zr-Ti. Чем устойчивее карбид, тем труднее он растворяется в аустените и выделяется при отпуске.

При введении в сталь в сравнительно небольшом количестве легирующий карбидообразующий элемент сначала растворяется в цементите, замещая часть атомов железа; при этом образуется легированный цементит, например (FeMn) 3 C. С увеличением содержания легирующего элемента сверх предела растворимости образуются специальные карбиды типа Сr 7 С 3 ,Mn 3 Cи др.

По строению кристаллической решетки различают карбиды двух типов. К карбидам первой группы относятся Fe 3 C,Mn 3 C, Сr 7 С 3, Cr 23 C 6 . Такие карбиды недостаточно прочны и при нагреве в процессе термической обработки стали распадаются с образованием твердого раствора легирующих элементов в аустените.

Карбиды второй группы Mo 2 C,WC,TiCимеют простые кристаллические решетки. Они характеризуются большей прочностью и распадаются при более высоких температурах нагрева. Все карбиды обладают высокой твердостью, но твердость карбидов второй группы несколько выше твердости карбидов первой группы.

С повышением дисперсности карбидов растет твердость и прочность стали.

Маркировка легированных сталей.

В России принята буквенно-цифровая система маркировки легированных сталей. Обозначения состоят из цифр и букв, указывающих на примерный состав стали.

Каждому легирующему элементу присвоена буква русского алфавита: А-азот, Б- ниобий, В-вольфрам, Г-марганец, Д-медь, Е-селен, К-кобальт, М-молибден, Н-никель, П- фосфор, Р- бор, С-кремний, Т-титан, Ф-ванадий, Х-хром, Ц- цирконий, Ч-иттрий и редкоземельные металлы, Ю- алюминий.

В конструкционных сталях первые две цифры указывают среднее содержание углерода в сотых долях процента (например, в стали 30ХГСА- примерно 0,3%С).В инструментальных сталях цифры соответствуют десятым долям процента(сталь 5ХНМ- 0,5%С). Если сталь имеет более 1% углерода, то

начальную цифру, характеризующую содержание углерода, обычно опускают (стали ХВГ, В1).

Цифры, стоящие после букв, обозначающих легирующие элементы, указывают приблизительное содержание легирующего элемента в целых процентах (например, в стали 34ХН3М содержание никеля-3%). При содержании легирующего элемента менее 1% цифра после буквы не ставится.

Буква в конце марки означает: А - данная сталь относится к высококачественной, что в основном определяется количеством вредных примесей серы и фосфора; Л - сталь относится к литейным; Ш и ВД- особо высококачественная сталь, полученная электрошлаковым и вакуумно-дуговым переплавом.

Для сталей специального назначения применяют дополнительную индексацию. Буквы вначале марки стали обозначают: А - автоматная, Ш- шарикоподшипниковая, Р- быстрорежущая, Е- магнитотвердая, Э- электротехническая.

Классификация легированных сталей.

Легированные стали делятся:

2) по суммарному количеству легирующих элементов : низколегированные (до 2%), среднелегированные (2,5-10%), высоколегированные (более 10%);

3) по химическому составу : хромистые, хромоникелевые, марганцовистые и т.д.;

4) классификация легированных сталей по структуре:

По структуре в равновесном состоянии, т.е. после медленного охлаждения(отжига), стали разделяются на следующие группы:

    доэвтектоидные стали , имеющие в структуре избыточный легированный феррит;

    эвтектоидные , имеющие перлитную структуру;

    заэвтектоидные, имеющие в структуре избыточные (вторичные) карбиды;

    ледебуритные стали, имеющие в структуре первичные карбиды, выделившиеся из жидкой стали. Образование карбидной эвтектики типа ледебурита в подобных сталях при их кристаллизации связано с тем, что ряд легирующих элементов сдвигает точку Е диаграммыFe-Fe 3 Cвлево, т.е. в сторону меньшего содержания углерода. Так, например, в стали, содержащей 5% хрома, предельная растворимость углерода в аустените (точка Е) смещается до 1,3%, а при содержании хрома 10% - до 1,0% С.

    Ледебуритные стали содержат таким образом, меньше углерода, чем белые чугуны, и поэтому могут подвергаться горячей обработке давлением. Врезультате ковки первичные карбиды принимают форму обособленных частиц.

К сталям ледебуритного класса принадлежат бысрорежущие стали (Р 6 М 5, Р18)

    К ферритному классу относятся малоуглеродистые стали, легированные большим количеством элементов, сокращающих область существования γ-твердого раствора. Стали этого класса имеют ферритную структуру с небольшим количеством карбидов. Феррит не претерпевает превращений (перекристаллизации) при нагреве вплоть до температуры плавления. Примерами таких сталей являются трансформаторные стали, высокохромистые коррозионностойкие и жаростойкие стали (08Х13, 08Х17Т, 15Х25Т и др.)

    В зависимости от структуры, получаемой при охлаждении на воздухе (нормализации) принято разделять стали на три класса:перлитный мартенситный и аустенитный.

Для легированных сталей перлитного класса кривая охлаждения на воздухе пересекает область перлитного превращения переохлажденного аустенита (рис.2а), и после нормализации образуется структура феррито-карбидной смеси (перлита, сорбита, троостита). По структуре в равновесном состоянии (после отжига) перлитные стали разделяются на доэвтектоидные, эвтектоидные и заэвтектоидные стали. К этому классу относятся все конструкционные и некоторые инструментальные легированные стали с суммарным содержанием легирующих элементов 5-8%.

Рис.2. Диаграмма изотермического распада аустенита различных классов стали:

а – перлитного; б – мартенситного; в – аустенитного

К мартенситному классу принадлежат стали, которые после охлаждения на воздухе (нормализации) приобретают структуру мартенсита с небольшим количеством остаточного аустенита. Суммарное содержание легирующих элементов в этих сталях составляет 10-15%. Повышенное содержание легирующих элементов обусловливает значительное смещение С-образных кривых вправо, и аустенит подобных сталей в условиях нормализации переохлаждается без распада до температуры мартенситного превращения (рис.2б). К мартенситному классу относятся хромистые нержавеющие стали (20Х13) и жаропрочные (15Х11МФ и др.), применяющиеся для лопаточного аппарата паровых и газовых турбин.

Аустенитный класс составляют стали с высоким содержанием никеля или марганца, т.е. элементов, расширяющих область существования γ -твердого раствора (легированного аустенита). При комнатной температуре эти стали имеют структуру аустенита. Общее содержание легирующих элементов в аустенитных сталях составляет 10-40% и более. Столь высокое содержание легирующих элементов приводит не только к резкому смещению С-образных кривых вправо, но и к снижению температуры начала мартенситного превращения в область отрицательных температур (рис.2.в).

К аустенитному классу принадлежат нержавеющие, кислотостойкие, жаропрочные и др. стали с особыми свойствами (стали 12Х18Н9Т, Х18Н10Т и др).

К промежуточным классам относятся: мартенсито-ферритный, аустенито-мартенситный, аустенитно-ферритный.