Сравнение многомодовых ов по характеристикам передачи. Одномодовый оптический кабель для любых условий прокладки

Оптоволоконные кабели имеют схожую структуру, но могут отличаться по различным характеристикам. По количеству модулей, волокон, толщине, материалу внешней оболочки и т.д. Оптические кабели бывают одномодовыми и многомодовыми. Кабель оптический одномодовый предназначен для передачи одного луча света, а многомодовый – нескольких лучей. Как правило, кабель оптический одномодовый предназначен для использования в телекоммуникационных сетях, для создания магистралей по передачи данных на большие расстояния.

В тоже время, многомодовые используются в сетях средней и малой дальности. имеет отличающуюся от многомодового структуру. В последнее время говорится о том, что многомодовые оптоволоконные кабели имеют преимущество перед одномодовыми, это по сути дела так, потому что они более чем в стократ превосходят одномодовые по производительности. Но, не смотря на все это, на дальние расстояния все же предпочтительней использовать одномодовые оптические кабели, потому что они давно и хорошо зарекомендовали себя в этой области.

Назначение кабеля оптического одномодового

Современный кабель оптический одномодовый является разновидностью оптоволоконного кабеля и предназначается для передачи одного пучка света (посредством многомодового передаются несколько пучков одновременно) при использовании в составе телекоммуникационных сетей и при организации магистралей, передающих данные на значительные расстояния.

Существующие ныне оптоволоконные кабели при схожести структуры различаются своими характеристиками, зависящими от количества модулей, толщины, числа волокон, материала внешней оболочки и проч. Кабель оптический одномодовый, в отличие от многомодового, при передаче сигнала по определению лишен межмодовой дисперсии, возникающей в результате разновременности достижения противоположного конца кабеля вводимыми в волокно одновременно разными модами. Одной из важных характеристик кабеля является также СКС-диаметр его сердцевины, для одномодового это, как правило, 8-10 мкм.

Путем практических исследований различных оптических кабелей специалисты определили, что при расстояниях, превышающих между объектами 500 метров, стоит отдать предпочтение одномодовым, обеспечивающим высокую и надежную скорость передачи на большой дальности при строительстве крупномасштабных сетей. Многомодовый кабель показывал результаты пониже.

Особенности кабеля оптического одномодового

Свое наименование кабель оптический одномодовый получил из-за того, что в процессе работы в оптоволокне образуется небольшое число мод, поэтому принято условно считать, что свет при этом распространяется по единственной траектории, следовательно, такое волокно и назвали одномодовым. А так, современное оптоволокно может нести в себе более двух сотен параллельных волокон, при этом, как правило, имеется возможность комбинировать сочетания в одном кабеле волокон, относящихся к разным типам.

Конструктивно оптоволоконный кабель состоит из единственной или же нескольких оптических волокон, являющихся, по сути, стеклянными нитями. Соответственно, передача информации производится переносом света внутри оптоволокна. Используется при этом процесс, называемый полным внутренним отражением. Принцип работы базируется на том, что световые волны отражаются от границы, разделяющей две прозрачные среды с различными показателями преломления.

Чаще всего кабель оптический одномодовый применяется для организации волоконно-оптических систем связи, прокладываемым по тоннелям, коллекторам и внутри зданий и помещений. Наружная оболочка его выполняется, как правило, из материалов, не поддерживающих и не распространяющих горение.

Преимущества кабеля оптического одномодового

Современный кабель оптический одномодовый характеризуется существенными преимуществами перед используемыми ранее медными проводниками. К ним безусловно относятся:
  • значительно большая полоса пропускания,
  • повышенная степень помехозащищенности (в частности, в области невосприимчивости к электромагнитным помехам и наводкам),
  • относительно малые объем и вес,
  • световой сигнал с малым затуханием,
  • гальваническая развязка вновь подключаемого оборудования,
  • надежная защита от несанкционированных подключений, что дополнительно защищает передаваемую информацию и проч.
Среди основных параметров оптоволоконных кабелей выделяют длину волны, размер волокон, диапазон минимальной полосы пропускания, максимальное затухание и ряд других. Кабель оптический одномодовый позволяет транслировать данные на скоростях до сотен Гбит/с при снижении стоимости материалов и технологий.

Одномодовый оптический кабель передает одну моду и имеет диаметр сечения ≈ 9,5 нм. В свою очередь, одномодовый волоконно оптический кабель может быть с несмещ енной, смещ енной и ненулевой смещ енной дисперсией.

Волоконно оптический многомодовый кабель ММ переда ет множество мод и имеет диаметр 50 или 62,5 нм.

На первый взгляд, напрашивается вывод, что многомодовый оптоволоконный кабель лучше и эффективнее, нежели оптический кабель SM. Тем более, что и специалисты нередко высказываются в пользу ММ на том основании, что, раз многомодовый оптический кабель обеспечивает многократный приоритет по производительности в сравнении с SM, то он во всех отношениях лучше его.

Между тем, мы бы воздержались от таких однозначных оценок. Количественный показатель - далеко не единственное основание для сравнения, и во многих ситуациях одномодовый оптоволоконный кабель оказывается предпочтительнее.

Главное отличие SM и MM кабелей - размерные показатели. Кабель оптический SM имеет волокно с меньшей толщиной (8-10 микрон). Это обуславливает его возможность передавать волну только одной длины по центральной моде. Толщина основного волокна в кабеле ММ значительно больше, 50-60 микрон. Соответственно, такой кабель одновременно может передавать несколько волн с разными длинами по нескольким модам. Однако большее количество мод сужают пропускную способность волоконно-оптического кабеля.

Остальные отличия одно- и многомодовых кабелей касаются материалов, из которых они изготовлены, и используемых источников света. Оптический кабель одномодовый имеет и стержень и оболочку, изготовленные только из стекла, а в качестве источника света - лазер. Кабель же ММ может иметь как стеклянные, так и пластиковые оболочку и стержень, а источником света для него служит светодиод.

Одномодовый кабель оптический 9/125 мкм

Кабель оптический одномодовый 8 волокон типа 9 125, имеет однотрубочную модульную конструкцию. Световоды расположены в центральной трубке, которая заполнена гидрофобн ым гелем. Наполнитель над ежно защищает волокна от разного рода механических воздействий, кроме того, он исключает воздействие температурных изменений внешней среды. Для защиты от грызунов и других подобных воздействий используется дополнительная опл етка из стеклоткани.

По сути, разработка и производство кабеля волоконно оптического 9 125 сводятся к поиску оптимального решения проблемы уменьшения оптической дисперсии (вплоть до нуля) на всех частотах, с которыми кабель будет работать. Большое количество мод отрицательно влияет на качество сигнала, а одномодовый кабель на деле имеет не одну моду, а несколько. Число их намного меньше, чем в многомодовом, тем не менее, оно больше единицы. Снижение эффекта оптической дисперсии приводит к уменьшению количества мод, и, соответственно, к улучшению качества сигнала.

В большинстве стандартов оптических волокон, применяемых в кабелях 9 125, нулевая дисперсия обеспечивается в узком диапазоне частот. Таким образом, одномодовым в буквальном смысле кабель является лишь с волнами конкретной длины. Однако существующие технологии уплотнения используют набор оптических частот для приема и передачи сразу нескольких широкополосных оптических каналов связи.

Одномодовый волоконно оптический кабель 9 125 используется как внутри зданий, так и на внешних магистралях. Его можно закапывать в грунт или применять в качестве подвесного кабеля.

Многомодовый оптический кабель 50/125 мкм

Кабель волоконно-оптический 50/125(OM2) многомодовый, применяется в оптических сетях с 10-гигабайтными скоростями, построенных на многомодовом волокне. В соответствиями с изменениями спецификации ISO/IEC 11801 в таких сетях рекомендуется использовать новый тип патч-кордового кабеля класса ОМЗ с типоразмером 50 125.

Кабель оптический 50 125 ОМЗ, соответственно сетевым приложениям 10 Gigabit Ethernet, предназначается для осуществления передачи данных на волнах длиной 850 нм либо 1300 нм, отличных максимально допустимыми значениями затухания. Используется для обеспечения связи в диапазоне действия частот 1013-1015 Гц.

Оптический кабель многомодовый 50 125 предназначается для патч-кордов и разводки до рабочего места, и используется только внутри помещений.

Кабель поддерживает передачу данных на короткие расстояния и подходит для непосредственного терминирования. Структура стандартного многомодового оптического волокна G 50/125 (G 62,5/125) мкм соответствует стандартам: EN 188200; VDE 0888, часть 105; МЭК “IEC 60793-2”; Рекомендация МСЭ-Т (ITU-T) G.651.

MM 50/125 имеет важное преимущество, которое заключается в низких потерях и абсолютной невосприимчивости к разного рода помехам. Это позволяет строить системы с сотнями тысяч каналов телефонной связи.

Виды применяемых волокон

В производстве SM и MM кабелей используются одномодовые и многомодовые волокна следующих типов:

  • одномодовое, рекомендация ITU-Т G.652.В (в маркировке тип “Е”);
  • одномодовое, рекомендация ITU-Т G.652.С, D (в маркировке тип “А”);
  • одномодовое, рекомендация ITU-Т G.655 (в маркировке тип “Н”);
  • одномодовое, рекомендация ITU-Т G.656 (в маркировке тип “С”);
  • многомодовое, с сердцевиной диаметром 50 мкм, рекомендация ITU-Т G.651 (в маркировке тип “М”);
  • многомодовое, с сердцевиной диаметром 62,5 мкм (в маркировке тип “В”)

Оптические параметры волокон в буферном покрытии должны соответствовать спецификациям фирм-поставщиков.

Параметры оптических волокон:

Тип OB
Символы позиции 3.4 таблицы 1 ТУ
Многомодовое Одномодовое
М В Е А Н С
Рекомендация МСЭ-Т G.651 G.652B G.652C(D) G.655 G.656
Геометрические характеристики
Диаметр отражающей оболочки, мкм 125 ± 1 125 ± 1 125 ± 1 125 ± 1 125 ± 1 125 ± 1
Диаметр по защитному покрытию, мкм 250 ± 15 250 ± 15 250 ± 15 250 ± 15 250 ± 15 250 ± 15
Некруглость отражающей оболочки, %, не более 1 1 1 1 1 1
Неконцентричность сердцевины, мкм, не более 1,5 1,5
Диаметр сердцевины, мкм 50 ± 2,5 62,5 ± 2,5
Диаметр модового поля, мкм, на длине волны:
1310 нм
1550 нм


9,2 ± 0,4
10,4 ± 0,8
9,2 ± 0,4
10,4 ± 0,8

9,2 ± 0,4

7,7 ± 0,4
Неконцентричность модового поля, мкм, не более 0,8 0,5 0,8 0,6
Передаточные характеристики
Рабочая длина волны, нм 850 и 1300 850 и 1300 1310 и 1550 1275 ÷ 1625 1550 1460 ÷ 1625
Коэффициент затухания OB, дБ/км, не более, на длине волны:
850 нм
1300 нм
1310 нм
1383 нм
1460 нм
1550 нм
1625 нм
2,4
0,7




3,0
0,7






0,36


0,22


0,36
0,31

0,22





0,22
0,25




0,35
0,23
0,26
Числовая апертура 0,200 ± 0,015 0,275 ± 0,015
Ширина полосы пропускания, МГц×км, не менее, на длине волны:
850 нм
1300 нм
400 ÷ 1000
600 ÷ 1500
160 ÷ 300
500 ÷ 1000




Коэффициент хроматической дисперсии пс/(нм×км), не более, в интервале длин волн:
1285÷1330 нм
1460÷1625 нм (G.656)
1530÷1565 нм (G.655)
1565÷1625 нм (G.655)
1525÷1575 нм








3,5



18
3,5



18


2,6 — 6,0
4,0 — 8,9

2,0 — 8,0
4,0 — 7,0

Длина волны нулевой дисперсии, нм 1300 ÷ 1322 1300 ÷ 1322
Наклон дисперсионной характеристики в области длины волны нулевой дисперсии, в интервале длин волн, пс/нм²×км, не более 0,101 0,097 0,092 0,092 0,05
Длина волны отсечки (в кабеле), нм, не более 1270 1270 1470 1450
Коэффициент поляризационной модовой дисперсии на длине волны 1550 нм, пс/км, не более 0,2 0,2 0,2 0,1
Прирост затухания из-за макроизгибов (100 витков × Ø 6О мм), дБ: λ = 1550 нм/1625 нм 0,5 0,5 0,5 0,5

Характеристики и типы оптического волокна

G.652 — Стандартное одномодовое волокно

Является наиболее широко используемым одномодовым оптическим волокном в телекоммуникациях.

Одномодовое ступенчатое волокно с несмещенной дисперсией служит основополагающим компонентом оптической телекоммуникационной системы и классифицируется стандартом G.652. Наиболее распространенный вид волокна, оптимизированный для передачи сигнала на длине волны 1310 нм. Верхний предел длины волны L-диапазона составляет 1625 нм. Требования на макроизгиб — радиус оправки 30 мм.

Стандарт разделяет волокна на четыре подкатегории A, B, C, D.

Волокно G.652. А отвечает требованиям, необходимым для передачи информационных потоков уровня STM 16, — 10 Гбит/с (Ethernet) до 40 км, в соответствии с Рекомендациями G.691 и G.957, а также уровня STM 256, согласно G.691.

Волокно G.652.B соответствует требованиям, необходимым для передачи информационных потоков уровня до STM 64 в соответствии с Рекомендациями G.691 и G.692, и уровня STM 256, согласно G.691 и G.959.1.

Волокна G.652.C и G.652.D позволяют осуществлять передачу в расширенном диапазоне длин волн 1360-1530 нм и обладают пониженным затуханием на «пике воды» («пик воды» разделяет окна прозрачности в полосе пропускания одномодовых световодов в диапазонах 1300 нм и 1550 нм). В остальном аналогичны G.652.A и G.652.B.

G.652.A/B — эквивалент OS1 (классификация ISO/IEC 11801), G.652.C/D – эквивалент OS2.

Использование волокна - G.652 при более высоких скоростях передачи на расстояния более 40 км приводит к несоответствию эксплуатационных качеств со стандартами для одномодового волокна, требует усложнения оконечной аппаратуры.

G.655 — Одномодовое волокно с ненулевой смещенной дисперсией(NZDSF)

Одномодовое волокно с ненулевой смещенной дисперсией NZDSF оптимизировано для передачи не одной длины волны, а сразу нескольких длин волн (мультиплексного волнового сигнала WDM и высокоплотного волнового сигнала DWDM). Волокно Corning защищено двойным акрилатным покрытием СРС, обеспечивающим высокую надежность и работоспособность. Наружный диаметр покрытия равен 245 мкм.

Волокно с ненулевой смещенной дисперсией (NZDSF) предназначено для применения в магистральных волоконно-оптических линиях и глобальных сетях связи, использующих DWDM-технологии. В этом волокне поддерживается ограниченный коэффициент хроматической дисперсии во всем оптическом диапазоне, используемом в волновом мультиплексировании (WDM). Волокна NZDSF оптимизированы для использования в диапазоне волн от 1530 нм до 1565 нм.

Оптические волокна категории G.655.А обладают параметрами, обеспечивающими их применение в одноканальных и многоканальных системах с оптическими усилителями (Рекомендации G.691, G.692, G.693) и в оптических транспортных сетях (Рекомендация G.959.1). Рабочие длины волн и дисперсия в волокне данной подкатегории ограничивают мощность входного сигнала и их применение в многоканальных системах.

Оптические волокна категории G.655.B аналогичны G.655.А. Но в зависимости от рабочей длины волны и дисперсионных характеристик мощность входного сигнала может быть выше, чем для G.655.А. Требования в части поляризационной модовой дисперсии обеспечивают функционирование систем уровня STM-64 на расстоянии до 400 км.

Категория волокон G.655.C подобна G.655.B, однако более строгие требования в части поляризационной модовой дисперсии позволяют использовать на данных оптических волокнах системы уровня STM-256 (Рекомендация G.959.1) или же увеличивать дальность передачи систем STM-64.

G.657 — Одномодовое волокно с уменьшенными потерями на изгибах с малыми радиусами

Оптическое волокно повышенной гибкости версии G.657 находит широкое применение в оптических кабелях для прокладки в сетях многоэтажных домов, офисов и т.д. Волокно G.657.A по своим оптическим характеристикам полностью идентично стандартному волокну G.652.D и в то же время имеет вдвое меньший допустимый радиус при укладке – 15 мм. Волокно G.657.В применяется на ограниченных расстояниях и обладает особо малыми потерями на изгибах.

Одномодовые оптические волокна характеризуются малым уровнем потерь на изгибах, предназначены в первую очередь для сетей FTTH многоквартирных зданий, а их преимущества особенно очевидны на ограниченном пространстве. Работать с волокном стандарта G.657, можно практически как с медножильным кабелем.

Для волокон типа G.657.A он составляет от 8,6 до 9,5 мкм, а для волокон типа G.657.B — от 6,3 до 9,5 мкм.

Нормы потерь на макроизгибах существенно ужесточены, поскольку этот параметр для G.657 является определяющим:

Десять витков волокна подкатегории G.657.A, намотанного на оправку радиусом 15 мм, не должны увеличивать затухание более чем на 0,25 дБ при длине волны 1550 нм. Один виток того же волокна, намотанного на оправку диаметром 10 мм, при условии, что остальные параметры не изменены, не должен увеличивать затухание более чем на 0,75 дБ.

Десять витков подкатегории G.657.B на оправке диаметром 15 мм, не должны увеличивать затухание более чем на 0,03 дБ при длине волны 1550 нм. Один виток на оправке диаметром 10 мм — более чем на 0,1 дБ, один виток на оправке диаметром 7,5 мм — более чем на 0,5 дБ.

Международной организацией по стандартизации (ISO) и Международной электротехнической комиссией (IEC) был опубликован стандарт ISO/IEC 11801 – «Информационные технологии - структурированные кабельные системы для помещений заказчика»

Стандарт задает структуру и требования к реализации универсальной кабельной сети, а также требования к производительности отдельных кабельных линий.

В стандарте для линий Gigabit Ethernet оптические каналы различаются по классам (аналогично категориям медных линий). OF300, OF500 и OF2000 поддерживают приложения оптического класса на расстояниях до 300, 500 и 2000 м.

Класс канала Затухание ММ-канала (дБ/Км) Затухание SM-канала (дБ/Км)
850 нм 1300 нм 1310 нм 1.550 нм
OF300 2.55 1.95 1.80 1.80
OF500 3.25 2.25 2.00 2.00
OF2000 8.50 4.50 3.50 3.50

Кроме классов каналов, во втором издании этого стандарта определены три класса ММ-волокна - OM1, OM2 и OM3 - и один класс SM-волокна - OS1. Эти классы дифференцируются по затуханию и коэффициенту широкополосности.

Все линии короче 275 м могут работать по протоколу 1000Base-Sx. Длину до 550 м, можно обеспечить, используя протокол 1000Base-Lx совместно со смещенным вводом светового луча (Mode Conditioning).

Класс канала Fast Ethernet GigaBit Ethernet 10 GigaBit Ethernet
100 Base T 1000 Base SX 1000 Base LX 10GBase-SR/SW
OF300 OM1 OM2 OM1* , OM2* OM3
OF500 OM1 OM2 OM1 *, OM2 * OS1 (OS2)
OF2000 OM1 - OM2 Plus, ОМЗ OS1 (OS2)

*) Mode Conditioning

Многомодовое волокно класса OM4 характеризуется минимальным коэффициентом широкополосности 4700 МГц x км при длине волны 850 нм (по сравнению с 2000 МГц х км волокна типа OM3) и является результатом оптимизации характеристик волокна ОМ3, обеспечивающих возможность достижения скорости передачи данных 10 Гб/с на расстоянии 550 метров. Новый сетевой стандарт IEEE 802.3ab 40 и 100 Гигабит Ethernet отметил, что новый тип многомодового волокна ОМ4 позволяет передать 40 и 100 Гигабит Ethernet на расстоянии до 150 метров. Волокна класса OM4 планируется использовать в будущем с оборудованием 40Gbps и наиболее широко при оборудовании ЦОД.

OM 1 и OM2 – Стандартные многомодовые волокна с сердцевиной 62,5 и 50 микрон соответсвенно.

Кабели, патчкорды и пигтейлы с многомодовыми волокнами типов ОМ1 62,5/125мкм и ОМ2 50/125мкм уже давно применяются в СКС для обеспечения передачи данных с высокой скоростью и на относительно большие расстояния, которые требуется в магистралях. Наиболее важными функциональными параметрами ММ-волокна является затухание (attenuation) и коэффициент широкополосности (bandwidth). Оба параметра определяются для длин волн 850 нм и 1300 нм, на которых работает большая часть активного сетевого оборудования.

Является специально разработанным многомодовым оптическим волокном применяемое для сетей Gigabit и 10 Gigabit Ethernet, существует только с размером сердцевины 50 микрон.

OM4 – Оптическое многомодовое волокно с сердцевиной 50 микрон «лазер-оптимизированное» нового поколения.

Многомодовое волокно типа ОМ4 – в настоящее время полностью соответствует современным стандартам волокон, предусмотренных для центров обработки данных и групп серверов следующего поколения. Оптическое волокно ОМ4 может быть использовано для более протяжённых линий в сетях передачи данных нового поколения с высочайшей производительностью передачи данных. Это волокно представляет собой результат дальнейшей оптимизации характеристик волокна ОМ3, позволяющего придать волокну характеристики, обеспечивающие возможность достижения скорости передачи данных 10 Гб/с на расстоянии 550 метров. Волокна типа OM4 характеризуются повышенной эффективной минимальной модальной полосой пропускания 4700 МГц км при длине волны 850 нм (по сравнению с 2000 МГц км волокна типа OM3).

Принцип передачи данных волоконно-оптическим кабелем

Как известно, все данные в компьютере представляются в виде нулей и единиц. Все стандартные кабели передают бинарные данные с помощью электрических импульсов. И только волоконно-оптический кабель, используя тот же принцип, передает данные с помощью световых импульсов. Источник света посылает данные по волоконно-оптическому «каналу», а принимающая сторона должна преобразовать полученные данные в необходимый формат.

Канал оптической передачи состоит из передатчика, световедущего оптического волокна и приёмника.

Существуют два типа оптоволоконных кабелей:

-многомодовый (multimode) , или мультимодовый, кабель, более дешевый, но менее качественный (ММ );

-одномодовый (single mode) кабель, более дорогой, но имеющий лучшие характеристики (SM ).

Основные различия между этими типами связаны с разными режимами прохождения световых лучей в кабеле.

Одномодовый кабель имеет диаметр центрального волокна 3 - 10 мкм. Для передачи данных используют свет с длиной волны 1300 и 1500 нм. Дисперсия и потери сигнала на этих частотах очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Однако длина одномодового кабеля может достигать 80 км.

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (Рис). Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки - 125 мкм (это иногда обозначается как 62,5/125). Допустимая длина кабеля достигает 2-5 км.

Для передачи данных на одном конце оптоволокна устанавливают передатчик-излучатель, на другом - фотоприемник. Тем самым, одновременно задействованы два волокна, одно из которых передает, а другое – принимает данные. Принятый оптический сигнал преобразуется в электрический с помощью специальных устройств – медиаконвертеров (Рис. 107), имеющих порты для подключения оптоволокна и кабеля «витая пара». Медиаконвертеры могут иметь исполнение в виде модулей, подключаемых непосредственно в слот коммутатора, как это показано на рис.

В последнее время для экономии числа волокон (а также соединительной аппаратуры) используют волновое мультиплексирование (WDM, Wave Division Multiplexing ): на одной длине волны передают сигнал в одном направлении, на другой - в обратном. Для этого используются приемопередатчики со встроенным WDM и одним разъемом для подключения волокна. На противоположных концах линии устанавливают разнотипные приемопередатчики: у одного передатчика длина волны равна1300 нм, у приемника – 1550 нм; у другого - наоборот.



Многомодовое волокно, в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению.


Рис.1 Одномодовое и многомодовое оптическое волокно

Оптоволокно (оптическое волокно) - это тонкая стеклянная (иногда пластиковая) нить предназначенная для передачи светового потока на большие расстояния.

В настоящее время оптоволокно широко используется как в промышленном так и в бытовом масштабе. В XXI-м веке оптоволокно и технологии работы с ним сильно упали в цене благодаря новым достижениям в техническом прогрессе и что ранее считалось слишком дорогим и инновационным, сегодня уже считается повседневным.

Каким же бывает оптоволокно:

  1. Одномодовым;
  2. Многомодовым;

В чем же отличие между этими двумя типами оптоволокна?

Итак, в любом оптоволокне есть центральная жила и оболочка:

Одномодовое оптоволокно

В одномодовом оптоволокне центральная жила составляет 9 мкм, а оболочка волокна составляет 125 мкм (отсюда маркировка одномодового волокна 9/125). Все световые потоки (моды) благодаря малому диаметру центральной жилы проходят параллельно или по центральной оси жилы. Диапазон длин волн использующихся в одномодовом оптоволокне составляет от 1310 до 1550 нм и используют сфокусированный узконаправленный лазерный луч.

Многомодовое оптоволокно

В многомодовом оптоволокне центральная жила составляет 50 мкм или 62,5 мкм, а оболочка так же 125 мкм. В связи с этим по многомодовому оптоволокну передается множество световых потоков, которые имеют различные траектории и постоянно отражаются от «краёв» центральной жилы. Длины волн использующихся в многомодовом оптоволокне составляет от 850 до 1310 нм и используют рассеянные лучи.

Отличия характеристик одномодового и многомодового оптоволокна

Немаловажную роль имеют затухания сигналов в одномодовом и многомодовом оптоволокне. Затухания в одномодовом волокне за счет узконаправленного луча в несколько раз ниже чем в многомодовом, что еще раз подчеркивает преимущество одномодового оптоволокна.

Наконец одним из главных критериев - это пропускная способность оптоволокна. И снова здесь преимущество имеет одномодовое оптоволокно перед многомодовым. Пропускная способность одномода в разы (если не сказать «на порядок») выше чем многомода.

Всегда было принято считать ВОЛС построенные на многомодовом оптоволокне намного дешевле чем на одномодовом. Это было обусловлено тем, что в многомоде в качестве источника света использовались светодиоды, а не лазеры. Однако в последние годы как в одномоде так и в многомоде стали применяться лазеры, что сказалось на уравнивании цен на оборудование для различного типа оптоволокна.

Оптоволоконный кабель (он же волоконно-оптический кабель ) – это принципиально другой тип кабеля по сравнению с двумя типами электрического или медного кабеля. Информация из него передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому светло проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Рис. 1. Оптическое волокно. Структура

Структура оптоволоконного кабеля очень простая и похожая на структуру коаксиального электрического кабеля (рис. 1). Только вместо центрального медного проведения здесь используется тонкое (диаметром около 1 - 10 полутемных) стекловолокно (3), а вместо внутренней изоляции - стеклянная или пластиковая оболочка (2), что не позволяет свету выходить за пределы стекловолокна. В этом случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами переламывания (у стеклянной оболочки коэффициент переламывания значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, потому что экранирование от внешних электромагнитных препятствий здесь не нужно. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может совмещать под одною оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель имеет исключительные характеристики по защищенности и секретности переданной информации. Никакие внешние электромагнитные препятствия в принципе не способны обезобразить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типа кабеля для несанкционированного прослушивания сети практически невозможно, потому что при этом нарушается целостность кабеля. Теоретически возможна полоса пропускания такого кабеля достигает величины 10 12 Гц, то есть 1000 ГГц, что несравненно выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и в настоящий момент приблизительно равняется стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, которые используются в локальных сетях, составляет от 5 до 20 дБ/км, что приблизительно отвечает показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты переданного сигнала затухания увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущество перед электрическим кабелем неопровержимые, у него просто нет конкурентов.

Недостатки оптоволоконного кабеля

Самый главный из них - высокая сложность монтажа (при установке оптоволоконного кабеля в разнимании необходима микронная точность, от точности стекловолокна и степени его полирования сильно зависит затухание в разнимании). Для установки разниманий применяют сварку или склеивание с помощью специального геля, который имеет такой же коэффициент переламывания света, что и стекловолокно. Во всяком случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде предварительно нарезанных кусков разной длины, на обоих концах которых уже установлены разнимания нужного типа. Стоит помнить, что некачественная установка разнимания резко снижает допустимую длину кабеля, обусловленной затуханием.

Также нужно помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, которые превратят световые сигналы в электрических и назад, что временами существенно увеличивает стоимость сети в целом.

Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные распределители (couplers ) на 2-8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неминуемо сильно ослабляет световой сигнал, и если разветвлений будет много, тот свет может просто не дойти до конца сети. Кроме того, в распределителях есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.

Оптоволоконный кабель менее крепок и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растягивание, а также раздавливая влияния.

Чувствительный оптоволоконный кабель и к ионизирующим излучениям, через которые снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно отражаются на нем, стекловолокно может треснуть.

Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в этом случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытиснит электрические кабели или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла вполне достаточно.

Типы оптоволоконных кабелей

  1. многомодовый или мультимодовый кабель, более дешевый, но менее качественный;
  2. одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Суть расхождения между двумя типами сводится к разным режимам прохождения световых лучей в кабеле.



Рис. 2. Распространение света в одномодовом кабеле

В одномодовом кабеле практически все лучи проходят тот же путь, в результате чего они достигают приемника одновременно, и форма сигнала почти не искажается (рис. 2). Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает светло только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные прийомопередавачи, что используют светло исключительно с необходимой длиной волны. Такие прийомопередавачи пока еще сравнительно дороги и не долговечные. Однако в перспективе одномодовый кабель должен стать основным типом благодаря своим прекрасным характеристикам. К тому же лазеры имеют большее быстродействие, чем обычные светодиоды. Затухание сигнала в одномодовом кабеле составляет около 5 дБ/км и может быть даже снижено до 1 дБ/км.


Рис. 3. Распространение света в многомодовом кабеле

В многомодовому кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (рис. 3). Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки 125 мкм (это иногда отражается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков в сравнении с одномодовым кабелем. Длина волны света во многомодовому кабеле равняется 0,85 мкм, при этом наблюдается разброс длин волн около 30 - 50 нм. Допустимая длина кабеля составляет 2 - 5 км.

Многомодовый кабель - это основной тип оптоволоконного кабеля в это время, потому что он более дешево и более доступно. Затухание во многомодовому кабеле больше, чем в одномодовом и составляет 5 - 20 дБ/км.

Типичная величина задержки для самых распространенных кабелей составляет около 4-5 нс/м, что близко к величине задержки в электрических кабелях.
Оптоволоконные кабели, как и электрические, выпускаются в исполнении plenum и non-plenum .