Экономические решения при реализации функции маркетингового контроля. Контроль маркетинга

Литье по выплавляемым моделям – это процесс, в котором для получения отливки применяются разовые точные неразъемные керамические оболочковые формы, полученные по разовым моделям с использованием жидких формовочных смесей. Перед заливкой расплава модель удаляется из формы выплавлением, выжиганием, растворением или испарением. Для удаления остатков модели и упрочнения формы ее нагревают до высоких температур. Прокалкой формы перед заливкой достигается практически полное исключение ее газотворности, улучшается заполняемость формы расплавом. Основные операции технологического процесса показаны на рисунке 2.1.

Модель или звено моделей 2 изготовляют в разъемной пресс-форме 1, рабочая полость которой имеет конфигурацию и размеры отливки с припусками на усадку модельного состава и материала отливки, а также обработку резанием (рисунок 2.1, а). Модель изготовляют из материалов, либо имеющих невысокую температуру плавления (воск, стеарин, парафин), либо способных растворяться (карбамид) или сгорать без образования твердых остатков (полистирол).

Готовые модели или звенья моделей собирают в блоки 3 (рисунок 2.1, б), имеющие модели элементов литниковой системы из того же материала, что и модель отливки. Блок моделей состоит из звеньев, центральная часть которых образует модели питателей и стояка. Модели чаши и нижней части стояка изготавливают отдельно и устанавливают в блок при его сборке.

Рисунок 2.1 – Последовательность изготовления многослойной оболочковой формы по выплавляемым моделям: а – запрессовка модельного состава в пресс-форму; б – сборка блока; в – нанесение на блок суспензии; г – посыпка огнеупорным зернистым материалом: д – сушка; е – удаление модели; ж – засыпка опорным.материалом; з – прокалка в печи; и – заливка формы расплавом; 1 – пресс-форма; 2 – модель; 3 – блок моделей отливок и литниковой системы; 4 – слой суспензии; 5 – огнеупорный зернистый материал; 6 – пары аммиака; 7 – горячая вода; 8 – опорный материал; 9 – печь; 10 – прокаленная форма; Q – подвод теплоты

Для получения оболочковых форм полученный блок моделей погружают в емкость с жидкой формовочной смесью – суспензией, состоящей из пылевидного огнеупорного материала, например, пылевидного кварца или электрокорунда и связующего (рисунок 2.1, в). В результате на поверхности модели образуется слой суспензии 4 толщиной менее 1 мм. Для упрочнения этого слоя и увеличения его толщины на него наносят слои огнеупорного зернистого материала 5 (мелкий кварцевый песок, электрокорунд, зернистый шамот) (рисунок 2.1, г). Операции нанесения суспензии и обсыпки повторяют до получения на модели оболочки требуемой толщины (3 – 10 слоев). При этом каждый слой покрытия высушивают на воздухе или в парах аммиака 6, что зависит от связующего (рисунок 2.1, д).

После сушки оболочковой формы модель удаляют из нее выплавлением, растворением, выжиганием или испарением. В качестве примера на рисунке 2.1 показано, как в процессе удаления выплавляемой модели в горячей воде 7 при температуре менее 100 о С получают многослойную оболочковую форму (рисунок 2.1, е).

С целью упрочнения формы перед заливкой ее помещают в металлический контейнер и засыпают огнеупорным материалом 8 (кварцевым песком, мелким боем использованных оболочковых форм) (рисунок 2.1, ж).

Для удаления остатков моделей из формы и упрочнения связующего контейнер с оболочковой формой помещают в печь 9 для прокаливания (рисунок 2.1, з). Прокалку формы ведут при температуре 900 – 1100 о С, далее прокаленную форму 10 извлекают из печи и заливают расплавом (рисунок 2.1, и). После затвердевания и охлаждения отливки до заданной температуры форму выбивают, отливки очищают от остатков керамики и отрезают от них литники. Во многих случаях оболочки прокаливают в печи до засыпки огнеупорным материалом, а затем для упрочнения их засыпают предварительно нагретым огнеупорным материалом. Это позволяет уменьшить продолжительность прокаливания формы перед заливкой и сократить энергозатраты. Так, например, организован технологический процесс на автоматических линиях для массового производства отливок.

Малая шероховатость поверхности формы при достаточно высокой огнеупорности и химической инертности материала позволяет получать отливки с поверхностью высокого качества. После очистки от остатков оболочковой формы шероховатость поверхности отливок составляет от Rz = 20 мкм до Ra - 1,25 мкм.

Отсутствие разъема формы, использование для изготовления моделей материалов, позволяющих не разбирать форму для их удаления, высокая огнеупорность материалов формы, а также нагрев ее до высоких температур перед заливкой способствуют улучшению заполняемости, дает возможность получать отливки сложнейшей конфигурации, максимально приближенной или соответствующей конфигурации готовой детали, из практически всех известных сплавов. Достигаемый коэффициент точности отливок по массе (КТМ = 0,85 – 0,95) способствует резкому сокращению объемов обработки резанием и отходов металла в стружку. Точность отливок может соответствовать классам точности 2 – 5 по ГОСТ 26645-85 (изм. № 1,1989), припуски на обработку резанием для отливок размером до 50 мм обычно не превышают 1 мм, а для отливок размером до 500 мм – около 3 мм. Поэтому литье по выплавляемым моделям относится к прогрессивным материало- и трудосберегающим технологическим процессам обработки металлов.

Особенности формирования отливок и их качество. Получение отливок в оболочковой форме сопряжено с рядом особенностей, в частности, перед заливкой форму нагревают до сравнительно высоких температур. Это определяет следующие технологические моменты.

Небольшие теплопроводность, теплоемкость и плотность материалов оболочковой формы и повышенная температура формы снижают скорость отвода теплоты от расплава, что способствует улучшению заполняемости формы. Благодаря этому возможно получение сложных стальных отливок с толщиной стенки 0,8 – 2 мм со значительной площадью поверхности. Улучшению заполняемости формы способствуют также и малая шероховатость ее стенок, возможность использования внешних воздействий на расплав, таких, как поле центробежных или электромагнитных сил, заливка с использованием вакуума и др.

Невысокая интенсивность охлаждения расплава в нагретой оболочковой форме приводит к снижению скорости затвердевания отливок, укрупнению кристаллического строения, возможности появления в центральной части массивных узлов и толстых (6 – 8 мм) стенок усадочных дефектов – раковин и пористости. Тонкие же стенки (1,5 – 3 мм) затвердевают достаточно быстро, и осевая пористость в них не образуется. Для уменьшения усадочных дефектов необходимо создавать условия для направленного затвердевания и питания отливок. Для улучшения кристаллического строения отливок используют термическую обработку.

Повышенная температура формы при заливке способствует развитию на поверхности контакта отливки с формой физико-химических процессов, результатом которых может быть как желательное изменение структуры поверхностного слоя отливки, так и нежелательное, т. е. приводящее к появлению дефектов поверхности.

Например, на отливках из углеродистых сталей характерным дефектом является окисленный и обезуглероженный поверхностный слой глубиной до 0,5 мм. Причина окисления и обезуглероживания отливок заключается во взаимодействии кислорода воздуха с металлом отливки при ее затвердевании и охлаждении. Основные факторы, влияющие на процесс обезуглероживания, – это состав газовой среды, окружающей отливку, температура отливки и формы, содержание углерода в отливке.

С увеличением содержания в окружающей отливку среде газов-окислителей (О 2 , СО 2 и паров Н 2 О) при высоких температурах отливки и формы процессы обезуглероживания интенсифицируются. Поэтому небольшая скорость охлаждения отливки в нагретой оболочковой форме способствует увеличению глубины обезуглероженного слоя. Увеличение содержания углерода в стали повышает интенсивность обезуглероживания поверхностного слоя отливки. Для уменьшения глубины обезуглероженного слоя используют специальные технологические приемы, основанные на предотвращении или уменьшении контакта кислорода воздуха с затвердевающей отливкой, на создании вокруг отливки восстановительной газовой среды и на быстром охлаждении, т.е. сокращении длительности реакции. На отливках из легированных сталей следствием физико-химического взаимодействия материалов формы и отливки при высоких температурах появляются точечные дефекты (питтинги), приводящие к снижению коррозионной стойкости, жаростойкости и жаропрочности отливок и их браку.

Предупредить появление этого дефекта можно созданием восстановительной газовой среды в форме; проведением заливки форм в вакууме, в нейтральной или защитной среде; уменьшением или устранением взаимодействия оксидов отливки и формы; заменой ее огнеупорного материала, например кремнезема, основными огнеупорами (магнезитовыми, хромомагнезитовыми).

Наконец, стремление получить отливки с чистой гладкой поверхностью вызывает необходимость использования огнеупорных материалов с малыми размерами зерна основной фракции (менее 0,03 мм). Это снижает газопрони-цаемость оболочковой формы, создает опасность образования воздушных «мешков» в форме при ее заполнении, приводит к снижению заполняемости формы и образованию дефектов отливок из-за незаполнения форм.

Эффективность производства и область применения. Исходя из производственного опыта, можно выделить следующие преимущества способа литья в оболочковые формы по выплавляемым моделям:

  1. возможность изготовления из практически любых сплавов отливок сложной конфигурации, тонкостенных, с малой шероховатостью поверхности, высоким коэффициентом точности по массе, минимальными припусками на обработку резанием, с резким сокращением отходов металла в стружку;
  2. возможность создания сложных конструкций, объединяющих несколько деталей в один узел, что упрощает технологию изготовления машин и приборов;
  3. возможность экономически выгодного осуществления процесса в единичном (опытном) и серийном производствах, что важно при создании новых машин и приборов;
  4. уменьшение расхода формовочных материалов для изготовления отливок, снижение материалоемкости производства;
  5. улучшение условий труда и уменьшение вредного воздействия литейного процесса на окружающую среду.

Наряду с преимуществами данный способ обладает и следующими недостатками:

  1. процесс изготовления литейной формы является многооперационным, трудоемким и длительным;
  2. большое число технологических факторов, влияющих на качество формы и отливки, и соответственно связанная с этим сложность управления их качеством;
  3. большая номенклатура материалов, используемых для получения формы (материалы для моделей, суспензии, обсыпки блоков, опорные материалы);
  4. сложность манипуляторных операций изготовления моделей и форм, сложность автоматизации этих операций;
  5. повышенный расход металла на литники и поэтому невысокий технологический выход годного (ТВГ).

Указанные преимущества и недостатки определяют эффективную область использования литья в оболочковые формы по выплавляемым моделям, а именно:

  1. изготовление отливок, максимально приближающихся по конфигурации к готовой детали, с целью снизить трудоемкость обработки труднообрабатываемых металлов и сплавов резанием, сократить использование обработки давлением труднодеформируемых металлов и сплавов, заменить трудоемкие операции сварки или пайки для повышения жесткости, герметичности, надежности конструкций деталей и узлов;
  2. изготовление тонкостенных крупногабаритных отливок повышенной точности с целью уменьшить массу конструкции при повышении ее прочности, герметичности и других эксплуатационных свойств;
  3. изготовление отливок повышенной точности из сплавов с особыми свойствами и структурой.

Производство отливок по выплавляемым моделям находит широкое применение в разных отраслях машиностроения и в приборостроении. Использование литья в оболочковые формы для получения заготовок деталей машин взамен изготовления их из кованых заготовок или проката приводит к снижению в среднем на 34 – 90% отходов металла в стружку. При этом трудоемкость обработки резанием уменьшается на 25 – 85%, а себестоимость изготовления деталей – на 20 – 80%. Однако следует учитывать, что экономическая эффективность существенно зависит от выбора номенклатуры отливок, изготавливаемых этим способом. Только при правильном выборе номенклатуры деталей достигается высокая экономическая эффективность данного производства.

Применяется для стального литья, а также для получения отливок из цветных металлов и их сплавов при небольших размерах деталей (например, детали швейных машин, режущий инструмент сложной формы из очень твердых материалов, детали ружей, мелкие детали счетных машин). Этот метод обеспечивает очень высокую степень точности до ±0,005 мм на 25 мм длины отливки, после которого почти не требуется механической дообработки.

Сущность метода состоит в том, что модель изготавливается из легко–плавких материалов: стеарина, парафина, воска, канифоли или чаще из смеси этих материалов.

После получения формы при просушке и прокалке этих форм, модель в форме расплавляется и состав ее выливается из формы, таким образом форма получается неразъемная, цельная, что и обеспечивает высокую точность отливок. Формовочная смесь состоит из мелкого пылевидного песка, небольшого количества каолина и водного раствора жидкого стекла (Na 2 O·SiO 2), т.е. представляет сметанообразную массу. Парафино-стеариновая модель, изготовленная в специальных прессформах для получения формы, погружается в эту смесь. В результате на поверхности модели образуется тонкая корка формы (толщиной 0,5÷2 мм), которая присыпается мелким песком.

Такая готовая форма с моделью внутри в течение 5–6 часов сушится на воздухе, а затем помещается в специальный сушильный шкаф литниковой системой вниз, где при t до 200°С модель расплавляется и вытекает из формы. Для упрочнения формы, она затем помещается в печь, где прокаливается при t3800–900°C. При этом остатки состава модели выгорают. Чтобы форма не разрушалась во время заливки металла ее ставят в специальные ящики из листвой стали и засыпают песком. Литниковая система обычно делается после получения самой формы. Причем в силу малых размеров деталей несколько форм блокируют и соединяют в общую литниковую систему. После заливки жидкого металла в такую форму и затвердения его, форма разрушается.

Для лучшего отделения формовочной смеси от отливки, отливку погружают в щелочные растворы, где формовочная смесь растворяется и окончательно отделяется от отливки.

Пресс формы изготавливают из пластичных сплавов, цветных металлов, обжимая и спрессовывая их на специальную модель из стали, называемой эталоном при Р = 1,5÷2 атм (0,15…0,2 МПа).

Технологический процесс изготовления отливок литьем по выплавляемым моделям состоит из следующих основных операций.

Изготовление моделей

Модельный состав, состоящий из двух или более легкоплавких компонентов: парафина, стеарина, жирных кислот, церезина и др., в пастообразном состоянии запрессовывают в прессформы (рисунок 2.5, а). В качестве материала прессформ в зависимости от вида производства используют гипс, пластмассы, легкоплавкие металлы, сплавы, сталь или чугун. После затвердевания модельного состава прессформа раскрывается и модель (рисунок 2.5, б) выталкивается в ванну с холодной водой.

Рисунок 2.5 – Последовательность операций процесса литья по выплавляемым моделям:

1 – прессформа; 2 – модельный состав; 3 – модель; 4 – модельный блок;
5 – емкость с керамической суспензией; 6 – специальная установка для обсыпки; 7 – кварцевый песок; 8 – бак с водой; 9 – устройство для нагрева воды; 10 – электрическая печь; 11 – оболочки; 12 – жаростойкая опока;
13 – ковш с расплавленным металлом

Сборка модельных блоков

Для этого модели собирают в модельные блоки (рисунок 2.5, в) с общей литниковой системой. В один блок объединяют от 2 до 100 моделей. Соединяют модели в кондукторе, механически скрепляя или склеивая их. Одновременно ведется отливка литниковой системы.

Для сборки моделей в блоки в кондукторе выставляют металлические стояки из алюминия, наращивают на них слой модельного состава толщиной 25 мм и крепят к нему модели. Этот прием ведет к повышению прочности блока, сокращению расхода состава, обеспечению удобства транспортирования, хранения и просушивания блоков при нанесении обмазки.

Покрытие моделей огнеупорной оболочкой

Модельный блок погружают в керамическую суспензию, налитую в емкость (рисунок 2.5, г), с последующей обсыпкой кварцевым песком в специальной установке (рисунок 2.5, д). Используемая керамическая суспензия состоит из огнеупорных материалов (пылевидный кварц, тонкоизмельченный шамот, электрокорунд и другие материалы) и связующего (гидролизованный раствор этилсиликата).

Затем модельные блоки сушат 22,5 ч на воздухе или 20 – 40 мин в среде аммиака. На модельный блок наносят 46 слоев огнеупорного покрытия с последующей сушкой каждого слоя.

Выплавление модельного состава из форм производят в горячей воде (80 – 90°С) (рисунок 2.5, е). При выдержке в горячей воде в течение нескольких минут модельный состав расплавляется, всплывает на поверхность ванны, откуда периодически удаляется для нового использования.

Подготовка литейных форм к заливке

После извлечения из ванны оболочки промывают водой и сушат в шкафах (1,52 ч при 200°С). Затем оболочки ставят вертикально в жаростойкой опоке, вокруг засыпают сухой кварцевый песок и уплотняют его, после чего форму направляют в электрическую печь (рисунок 2.5, ж), в которой ее прокаливают (не менее 2 ч при 900 – 950°С).

В печи частички связующего спекаются с частичками огнеупорного материала, влага испаряется и остатки модельного состава выгорают.

Заливка расплавленного металла из ковша производится сразу же после прокалки в горячую литейную форму (рисунок 2.5, з).

Охлаждение отливок.

После охлаждения отливки форму разрушают. Отливки отделяют от литников и для окончательной очистки направляют на химическую очистку, затем промывают проточной водой, сушат, подвергают термической обработке и контролю.

Участки литья по выплавляемым моделям имеются на многих судостроительных и машиностроительных заводах. На них изготовляют сложные по конфигурации стальные отливки, получение которых другими способами или с применением механической обработки невозможно или привело бы к значительному усложнению технологического процесса и удорожанию продукции. К таким отливкам относятся в основном различные мелкие детали: турбинные лопатки, крыльчатки, решетки, распылители, угольники, кронштейны, рукоятки, ключи и другие детали высокой точности.

Электрошлаковое литье (ЭШЛ) – это способ получения фасонных отливок в водоохлаждаемой металлической литейной форме – кристаллизаторе, основанной на применении ЭШЛ расходуемого электрода. Применяется для получения точных крупных стальных (спец. сплавов) отливок ответственного назначения (фасонные элементы аппаратуры, работающие под давлением).

Сущность заключается в том, что приготовление расплава (плавка) совмещено по месту и времени с заполнением литейной формы V распл. = V кристал.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОТЕХНИКИ

Расчетно-графическая работа

По дисциплине: Технологические процессы и производства

На тему: Литье по выплавляемым моделям

Выполнил:

студент гр.АТП-307у

Кумачёв М.И.

Проверил:

Рябов Ю.А.

1. Литье по выплавляемым моделям

1.1 Суть процесса

Литье по выплавляемым моделям - это процесс, в котором для получения отливок применяются разовые точные неразъемные керамические оболочковые формы, получаемые по разовым моделям с использованием жидких формовочных смесей. Перед выжиганием, выплавлением или испарением. Для удаления остатков модели и упрочнения формы ее нагревают до высоких температур. Прокалкой формы перед заливкой достигается практически полное исключение ее газотворности, улучшается заполняемость расплавом. литье пресс форма лазернойстереолитография

Основные операции технологического процесса можно проследить по рис. 1.1. модель или звено моделей 2 изготовляют в разъемной пресс-форме 1, рабочая полость которой имеет конфигурацию и размеры отливки с припусками на усадку (модельного состава и материала отливки) и обработку резанием (рис. 1.1 а). Модель изготовляют из материалов, либо имеющих невысокую температуру плавления, либо способных растворяться (карбамид) или сгорать без образования твердых остатков (полистирол). Готовые модели или звенья моделей собирают в блоки 3 (рис. 1.1 б), имеющие модели элементов литниковой системы из того же материала, что и модель отливки. Блок моделей состоит из звеньев, центральная часть которых образует модели питателя и стояка. Модели чаши и нижней части стояка изготовляют отдельно и устанавливают в блок при его сборке. Блок моделей погружают в емкость с жидкой формовочной смесью - суспензией для оболочковых форм, состоящей из пылевидного огнеупорного материала, например, пылевидного кварца или электрокорунда, и связующего (рис. 1.1 в). В результате поверхности модели образуется тонкий (менее 1 мм) слой 4 суспензии. Для упрочнения этого слоя и увеличения толщины на него наносят слои огнеупорного зернистого материала 5 (мелкий кварцевый песок, электрокорунд, зернистый шамот) (рис. 1.1 г). Операции нанесения суспензии и обсыпки повторяют до получения на модели оболочки требуемой толщины (3-10 слоев).

Каждый слой покрытия высушивают на воздухе или в парах аммиака 6, что зависит от связующего (рис 1.1 д). После сушки оболочковой формы модель удаляют из нее выплавлением, растворением, выжиганием или испарением. Например, в процессе удаления выплавляемой модели в горячей воде 7 получают многослойную оболочковую форму по выплавляемой модели (рис. 1.1 е). С целью упрочнения перед заливкой ее (форму) помещают в металлический контейнер и засыпают огнеупорным материалом 8 (кварцевым песком, мелким боем использованных оболочковых форм) (рис. 1.1 ж). Для удаления остатков моделей из формы и упрочнения связующего контейнер с оболочковой формой помещают в печь 9 для прокаливания (рис. 1.1 з). Прокалку формы ведут при температуре 900..1100°С, далее прокаленную форму 10 извлекают из печи и заливают расплавом (рис. 1.1 и). После затвердевания и охлаждения отливки очищают от остатков керамики и отрезают от них литники.

Малая шероховатость поверхности формы при достаточно высокой огнеупорности и химической инертности материала позволяет получать отливки с поверхностью высокого качества.

Отсутствия разъема формы, использование для изготовления моделей материалов формы, нагрев ее до высоких температур перед заливкой - все это способствует улучшению заполняемости, дает возможность получать отливки сложнейшей конфигурации, максимально приближенной или соответствующей конфигурации, максимально приближенной или соответствующей конфигурации готовой детали, практически из известных сплавов.

Эффективность производства и область применения. Исходя из производственного опыта можно выделить ряд преимуществ способа литья в оболочковые формы по выплавляемым моделям: 1) возможность изготовления практически из любых сплавов отливок разной конфигурации, тонкостенных, с малой шероховатостью поверхности, высоким коэффициентом точности по массе, минимальными припусками на обработку резанием, с резким сокращением отходов металла в стружку; 2) возможность создания сложных конструкций, объединяющих несколько деталей в один узел, что упрощает технологию изготовления машин и приборов; 3) возможность экономически выгодного осуществления процесса в единичном и серийном производствах, что важно при создании новых машин и приборов; 4) уменьшение условий труда и уменьшение вредного воздействия литейного процесса на окружающую среду.

Наряду с преимуществами данный способ обладает и следующими недостатками: 1) процесс изготовления формы многооперационный, трудоемкий и длительный; 2) большое число технологических факторов, влияющих на качество формы и отливки, и соответственно связанная с этим возможность управления качеством; 3) большая номенклатура материалов, используемых для получения формы (материалы для моделей, суспензии, обсыпки блоков, опорные материалы); 4) сложность манипуляторных операций изготовления моделей и форм, сложность автоматизации этих операций; 5) повышенный расход металла на литники и поэтому невысокий технологический выход годного (ТВГ).

Указанные преимущества и недостатки определяют эффективную область использования литья в оболочковые формы по выплавляемым моделям, а именно:

1) Изготовление отливок, максимально приближающихся по конфигурации к готовой детали, с целью снизить трудоемкость по конфигурации к готовой детали, с целью снизить трудоемкость обработки труднообрабатываемых металлов и сплавов резанием, сократить использование обработки давлением труднодеформируемых металлов и сплавов, заменить трудоемкие операции, надежности конструкций деталей и узлов;

2) Изготовление тонкостенных крупногабаритных отливок повышенной точности с целью уменьшить массу конструкции при повышении ее прочности, герметичности и других эксплуатационных свойств;

3) Изготовление отливок повышенной точности из сплавов с особыми свойствами и структурой.

Производство отливок по выплавляемым моделям находит широкое применение в разных отраслях машиностроения и в приборостроении. Использование литья в оболочковые формы для получения заготовок деталей машин взамен изготовления их из кованых заготовок или проката приводит к снижению в среднем на 34..90% отходов металла в стружку. При этом трудоемкость обработки резанием уменьшается на 25..85%, а себестоимость изготовления деталей - на 20..80%. однако следует учитывать, что экономическая эффективность существенно зависит от выбора номенклатуры отливок, изготовляемых этим способом. Только при правильном выборе номенклатуры деталей достигается высокая экономическая эффективность данного производства.

1.2 Пресс-формы

Требования к пресс-формам. Пресс-форма - это инструмент для изготовления модели. Главное требование к пресс-форме заключается в том, чтобы в ней можно было получить модели отливки с заданными точностью размеров и шероховатостью поверхности.

Точность размеров модели и качество воспроизведение ее конфигурации зависят от точности размеров полости пресс-формы, тем выше точность моделей. Поэтому всегда стремятся использовать минимальное число разъемов. Однако для получения сложных моделей приходится делать несколько разъемов, чтобы модель можно было извлечь из пресс-формы.

Для хорошего заполнения полости пресс-формы модельным составом она должна иметь соответствующие литниковую систему, а также вентиляционную систему, обеспечивающую удаление воздуха из полости пресс-формы при заполнении ее модельным составом.

Для обеспечения достаточной скорости охлаждения модельных составов в пресс-форме предусмотрена система охлаждения водой или другими теплоносителями.

По конструкции и методам изготовления обычно различают пресс-формы для единичного и мелкосерийного, серийного и массового производства.

1.3 Технология изготовления моделей

Технологический процесс получения моделей и блоков моделей состоит из приготовления модельных составов, изготовления моделей отливок и литниково-питающих систем, отделки и контроля моделей, сборки моделей в блоки.

Требования к модельным составам. Качество моделей зависит от свойств и технологии приготовления модельного состава.

Для получения моделей используют различные модельные составы: выплавляемые, растворяемые, выжигаемые. Любой модельный состав должен удовлетворять определенным требованиям.

В расплавленном состоянии модельный состав должен обладать хорошей жидкотекучестью для четкого воспроизведения конфигурации модели при заполнении полости пресс-формы и легкого и полного удаления из оболочковой формы. Температура плавления модельного состава должна быть невысокой (60..140°С), что облегчает изготовление моделей и из удаление из оболочковой формы. Температура размягчения модельного состава должна быть 35..45°С, т.е. превышать температуру помещений, где изготовляют, хранят, собирают модели в блоки. Усадка состава при охлаждении и его расширение при нагреве должны быть минимальными и стабильными, чтобы точность моделей, а соответственно, и отливок была высокой. Модельный состав не должен прилипать к поверхности пресс-формы; химическое взаимодействие его с материалом пресс-формы недопустимо. После затвердевания в пресс-форме модельный состав должен обладать прочностью и твердостью, достаточными для того, чтобы модели не деформировались и не ломались на последующих операциях технологического процесса.

Исходные материалы для модельных составов. Для приготовления модельных составов наибольшее применение в производстве нашли следующие исходные материалы:

1) Парафин;

2) Стеарин;

3) Церезин;

4) Буроугольный воск;

5) Канифоль;

6) Полистирол блочный;

7) Полистирол вспенивающийся;

8) Полиэтилен

9) Полиэтиленовый воск;

10) Кубовый остаток;

11) Карбамид;

12) Этилцеллюлоза.

Изготовление моделей. Процесс изготовления моделей включает в себя подготовку пресс-формы, заполнение пресс-формы модельным составом, выдержку для затвердевания и охлаждения модели, разборку пресс-формы и извлечение модели, выдержку модели до окончания усадки.

При подготовке пресс-формы ее рабочую полость и поверхность разъема очищают от остатков модельного состава, наносят на поверхность рабочей полости смазочный материал (трансформаторное масло) или распыляют сжатым воздухом эмульсию. Смазочный материал должен быть нанесен ровным слоем.

Заполнение пресс-форм модельным составом в производстве чаще всего осуществляют свободной заливкой и заливкой под давлением жидкого модельного состава, а также запрессовкой пастообразного модельного состава пресс-формы.

При охлаждении мелкие несложные модели охлаждают в проточной воде или сжатым воздухом. При использовании воды последняя и охлаждает модели, и одновременно транспортирует их к месту сборки в блоки. Крупные модели так охлаждать нельзя, так как при ускоренном охлаждении возникнут неравномерности температур, которые приведут к внутренним напряжениям и, как следствие, к короблению. Поэтому крупные модели охлаждают медленно на воздухе в течение не менее 3 ч.

Существуют особые способы изготовления моделей, с помощью которых можно изготовлять сложные модели с полостями, отверстиями с криволинейной осью, с последующей сборкой модели в единое целое. Используют также растворяемые карбамидные стержни, керамические стержни и гибкие резиновые пресс-формы.

1.4 Изготовление оболочковых форм

Требования к формам. Оболочковая форма должна отвечать следующим требованиям: обладать достаточной прочностью, выдерживать динамический и статический напоры расплава, не деформироваться при заливке, затвердевании и охлаждении отливки; быть огнеупорный, т.е. не разоупрочняться при прокаливании и особенно при заливке; иметь газопроницаемые стенки, чтобы в полостях формы не возникало противодавление воздуха; быть химически инертной к модельному составу и металлу отливки; иметь достаточную податливость, чтобы не препятствовать усадке сплава; обеспечивать получение отливок с поверхностью требуемой шероховатости и высокой точности размеров, массы и конфигурации.

Материалами керамической оболочковой формы являются огнеупорная основа (две фракции - пылевидная не менее 0,05 мм и «грубая» 0,1..0,3 мм) и связующее. По химическому составу огнеупорных материалов керамические оболочные формы разделяют на оксидные и углеродные. В свою очередь, оксидные материалы форм по химическому составу разделяют на кислые, основные, амфотерные.

Материалы для изготовления форм. Для изготовления оболочковой формы используют следующие огнеупорные материалы: мелкодисперсную основу суспензии, обсыпку и опорный материал. Общими требованиями огнеупорным материалам для оболочковых форм являются: высокая огнеупорность (как правило, не ниже 1500С); низкий температурный коэффициент линейного расширения (ТКЛР); отсутствие полиморфных превращений при нагревании и охлаждении; химическая стойкость при нагревании.

Не все огнеупоры удовлетворяют этим требованиям. Например, наиболее дешевый и не дефицитный материал - кварц кристаллический, обладает достаточно высокой огнеупорностью, при нагревании претерпевает ряд полиморфных превращений, сопровождающихся объемными изменениями. Это является причиной образования в оболочках трещин и, как следствие, брака отливок.

Материалы, используемые для изготовления оболочковых форм:

2) Пылевидный кварц

3) Кварцевый песок

4) Плавленый кварц

5) Высокоглиноземистый шамот

6) Электрокорунд

8) Оксид магния

9) Оксид кальция

Общие сведения о готовом связующем. В литье по выплавляемым моделям при изготовлении оболочковых форм в качестве связующего применяются гидролизованные растворы этилсиликата.

В том виде, в котором этилсиликаты поставляются предприятиями химической промышленности, они не являются связующими. Для технологических целей литейного производства в условиях литейного цеха связующее приготовляют путем проведения сложной химической операции - гидролиза этилсиликата. При этом из-за нестабильности состава исходного этилсиликата приходится корректировать рецептуры, обеспечивать точную дозировку составляющих суспензии.

Изготовление оболочковых форм. Суспензия наносится на блоки моделей при их окунании в ванну с суспензией, а на крупные блоки и модели - путем их обливания. В зависимости от характера производств и степени механизации блок моделей погружают в ванну вручную, с помощью манипуляторов или копирныхустройств на цепных конвейерах. Блок погружают таким образом, чтобы с поверхности моделей, особенно из глухих полостей и отверстий, могли удалиться пузырьки воздуха. Вынутый из суспензии блок моделей медленно поворачивают в разных направлениях, чтобы суспензия равномерно распределилась по поверхности моделей, а излишки ее стекли. После этого на слой суспензии сразу наносится слой песка (между моментами нанесения суспензии и обсыпкой должно быть не более 10 с, так как долее суспензия подсохнет и песок не соединится с ней). Суспензию в ванне непрерывно перемешивают с небольшой скоростью для предотвращения оседания огнеупорного материала. Песок на слой суспензии наносится при погружении блока в «кипящий» слой песка.

На рисунке представлена схема установки для обсыпки блока моделей в кипящем слое песка. Установка состоит из емкости с песком, в нижней части которой расположена полость 2, в которую подводится сжатый воздух. Полость 2 отделена от емкости 1 сеткой, на которой уложен слой войлока. Воздух, проходя через песок, переводит его во взвешенное «кипящее» состояние. Блок моделей 3, предназначенный для обсыпки, погружают в этот слой кипящего песка.

После нанесения каждого слоя суспензии и обсыпки его выполняется сушка оболочковых форм. Форму высушивают в потоке воздуха или в парах аммиака. Во время сушки на воздухе завершаются процессы гидролиза, происходит испарение растворителя и воды, коагуляция золя кремниевой кислоты и превращение его в гель с последующим затвердеванием и образованием твердых прослоек, связывающих зерна огнеупорного пылевидного материала.

Продолжительность сушки и обсыпки каждого слоя суспензии на воздухе 2..4 ч, а в парах аммиака - 50..60 мин, из которых 20..30 мин - сушка на воздухе, 10..20 мин - сушка в парах аммиака и 10..20 мин - выветривание паров аммиака. Сушку ведут в вертикальных и горизонтальных многоярусных сушилках.

Удаление моделей. Модели из выплавляемых воскообразных составов удаляют из формы погружением блока моделей в горячую воду или ванну с модельным составом. Эти способы получили наибольшее применение на производстве. Возможно удаление выплавляемых моделей также в паровых автоклавах или горячим воздухом. Эти способы вследствие больших потерь модельного состава и сложности оборудования применяют редко.

Выплавление в воде позволяет получить 90..95% возврата модельного состава, однако достаточно большой является вероятность появления трещин в оболочке.

Выплавление в перегретом модельном составе позволяет повысить прочность оболочковой формы в непрокаленном состоянии благодаря пропитке ее модельным составом. При прокаливании оболочковой формы воскообразный состав в ее порах коксуется и дополнительно упрочняет форму. Однако вследствие перегрева ухудшается качество возврата.

Выплавление горячим воздухом используют для модельных составов канифоль-полистирол-церезин. Для уменьшения вероятности образования трещин в оболочковой форме ее формуют в жидкой формовочной смеси. Затем форму высушивают при 80..90°С в течение 10 ч, и в процессе нагрева до 200..220°С модели выплавляются.

Растворимые карбамидные составы растворяют в воде при 20..27°С. Так как модельный состав не расширяется, трещин в оболочковой форме не образуется.

Пенополистироловые выжигаемые модели могут быть удалены из формы выжиганием в процессе ее нагрева вместе с модельным блоком или путем растворения.

Формовка. Для предотвращения разрушения оболочковой формы при заливке ее заформовывают в сыпучие огнеупорные материалы или жидкие формовочные смеси. В качестве опорных материалов используют сухой кварцевый песок, шамотный порошок, размолотые и просеянные через сито с ячейкой 2 мм остатки оболочки после очистки отливок.

В производстве используют два способа формовки оболочковых форм в сыпучие опорные материалы: в холодном и нагретом состоянии форм и опорных материалов.

Прокаливание оболочковых форм. Данная операция необходима для полного удаления из форм остатков модельного состава, испарения остатков воды и продуктов неполного гидролиза связующего, а также спекания связующего и огнеупорного пылевидного материала. Во время прокаливания в стенке оболочковой формы образуются поры и микротрещины, благодаря чему возрастает газопроницаемость оболочки. Оболочковые формы без опорных материалов прокаливают в течение 0,5..1 ч. Тонкая стенка формы быстро прогревается снаружи и изнутри, в ней возникают лишь минимальные напряжения и микротрещины, не оказывающие существенного влияния на ее прочность.

1.5 Заливка форм, выбивка и очистка отливок

Заливка форм. Температура форм перед заливкой зависит от толщины стенок и материала отливки. Обычно расплав заливают в горячие (700..1600°С) формы сразу после их прокаливания стали и жаропрочные сплавы для тонкостенных отливок заливают при температуре формы 1520..1600°С, медные сплавы - при 900..1100°С, алюминиевые сплавы - 700..800°С. При изготовлении отливок с массивными стенками расплав заливают в охлажденные до 200..400°С формы, что способствует улучшению структуры отливок.

При изготовлении тонкостенных отливок из жаропрочных сталей и сплавов, склонных к окислению, плавку ведут в вакуумных плавильно-заливочных установках. Установка такого типа имеет камеру, в которой располагается печь 4 для подогрева оболочковых форм 5 перед заливкой расплава. Форму устанавливают перед плавкой в печь подогрева. После приготовления расплава форму 5 перемещают вместе с печью 4 подогрева на позицию заливки и заливают расплавом.

При изготовлении тонкостенных отливок из сплавов, обладающих пониженной жидкотекучестью, заливку форм 5 для улучшения их заполняемости проводят центробежным способом, размещая центробежную машину 6 в вакуумной камере 1 плавильно-заливочной установки.

Выбивка форм и очистка отливок. Оболочковые формы без опорного материала после заливки и охлаждения отливки поступают на предварительную очистку. Формы, упрочненные сыпучим материалом, легко выбиваются при опрокидывании контейнеров на провальную решетку, а формы с жидким упрочняющим материалом выбивают на выбивных решетках.

Предварительную очистку отливок от оболочки формы выполняют на вибрационных установках. Стояк литниково-питающей системы зажимают в приспособлении и включают вибратор: под действием вибрации оболочка формы отделяется от отливки.

Окончательная очистка отливок необходима по следующим причинам. Во время предварительной очистки отливок остатки формы полностью отделяются только на плоских отливках без отверстий и поднутрений. Чаще применяют гидроабразивный, электроискровой, химический, химико-термический, гидравлический способы окончательной очистки отливок.

2. Литье по газифицируемым моделям

Суть способа.Эту развивающуюся технологию можно отнести к группе способов получения отливок в неразъемных формах по разовой модели как литье по выплавляемым моделям. Но в отличие от данных сходных способов модель удаляется (газифицируется) не до заливки, а в процессе заливки формы металлом, который, вытесняя «испаряющуюся модель» из формы, занимает освободившееся пространство полости формы.

Собранную модель (рис. а) окрашивают слоем огнеупорной краски и сушат на воздухе. В итоге получается огнеупорная газопроницаемая оболочка, прочно связанная с пенополистироловой моделью.

Готовую модель устанавливают в специальную опоку-контейнер, засыпают зернистым огнеупорным наполнителем без связующего, уплотняют его вибрацией, закрывают металлической крышкой с отверстиями, нагружают и устанавливают литниковую чашу (рис. б).

При изготовлении более сложных отливок, контейнер после подачи опорного материала закрывают сверху полиэтиленовой пленкой, как при вакуумной формовке. Чтобы уменьшить вероятность разрушения формы в ней создают разрежение до 0,04..0,05 МПа. При изготовлении крупных массивных отливок используют обычные холоднотвердеющиежидкокоподвижные или сыпучие формовочные смеси.

Приготовленную форму заливают жидким металлом (рис. в). Из-за относительно низкой температуры газификации пенополистирола (около 560°С) модель газифицируется под воздействием теплоты заливаемого металла и таким образом полость формы постепенно освобождается для жидкого металла.

После затвердевания и охлаждения отливки опоку-контейнер переворачивают, наполнитель высыпается, отделяясь от отливки, и она (рис. г) поступает на финишные операции. В случае использования обычных формовочных смесей форму выбивают на выбивных решетках.

Главная особенность способа (применение неразъемной формы) определяет его основное преимущество для качества готовых отливок - повышение точности благодаря сокращению числа частей формы, стержней, а следовательно, и возможных искажений конфигурации и размеров отливок, связанных с изготовлением и сборкой этих элементов формы.

К настоящему времени областями применения литья по газифицируемым моделям являются следующие:

· Изготовление средних и крупных массивных отливок в условиях опытного и мелкосерийного производства;

· Изготовление сложных отливок массой до 50 кг с повышенной точностью размеров в условиях серийного и крупносерийного производства из черных и цветных сплавов.

Модельные материалы.В качестве материала для изготовления газифицируемых моделей служит вспенивающийся полистирол, который представляет собой синтетической полимерный продукт суспензионной полимеризации стирола в присутствии эмульгатора, стабилизатора и порообразователя. В качестве порообразователя чаще всего используют изопентан. При нагреве до 27,9°Сизопентан закипает и превращается в газ с увеличением объема, а при 80..90°С полистирольная оболочка размягчается под действием давления газа деформируется. При вспенивании гранул в замкнутом объеме они спекаются в монолитную пеномассу - пенополистирол, точно воспроизводя конфигурацию ограничивающей его рост конструкции.

Изготовление газифицируемых моделей. Процесс получения моделей в массовом и крупносерийном производстве состоит из двух стадий: предварительное вспенивание в свободном состоянии исходных гранул вспенивающегося полистирола и окончательное вспенивание гранул в замкнутой полости пресс-формы - получение модели из пенополистирола.

Предварительное вспенивание гранул. Предварительная тепловая обработка вспенивающегося полистирола необходима для получения впоследствии газифицируемой модели с заданной объемной массой (плотностью),которая определяет прочность модели и качество поверхности.

На рисунке показана установка непрерывного действия для предварительного вспенивания гранул полистирола. Гранулы полистирола загружают в бункер 4, из которого с помощью тарельчатого питателя они попадают в камеру вспенивания, обогреваемую паром. В процессе вспенивания гранулы продвигаются в ней с помощью шнека. Режим вспенивания регулируется подачей пара и скоростью прохождения гранул полистирола по камере. Температура вспенивания 96..98°С, продолжительность 1..2 мин.

После предварительного вспенивания гранулы выдерживают на воздухе от 6 ч до 2 сут. В этот период оболочка гранул, охлаждаясь, вновь переходит в стеклообразное твердое состояние, а пары изопентана конденсируются, что приводит к возникновению вакуума в гранулах. В процессе выдержки происходит диффузия воздуха внутрь гранул и давление выравнивается.

Изготовление моделей в пресс-форме. Процесс заключается в повторном нагреве подвспененных и активированных гранул полистирола, помещенных в пресс-форму, в результате которого они окончательно вспениваются и спекаются между собой, образуя пенополистироловую модель отливки.

Подготовленные гранулы засыпают или задувают сжатым воздухом в смазанную специальной смазкой (чтобы исключить прилипание к модели) рабочую полость пресс-формы так, чтобы они полностью заполнили ее объемы. Смазками служат: раствор синтетического термостойкого каучука (СТК), силиконовая жидкость, глицерин. Смазка рабочей поверхности пресс-формы кремнийорганическими соединениями позволяет получать 10-15 моделей без ее возобновления.

Нагрев гранул в крупносерийном и массовом производстве целесообразно проводить способом так называемого «теплового удара»: перегретый пар с температурой 125..135°С под давлением 0,2..0,35 МПа подают непосредственно в пресс-форму, заполненную гранулами полистирола. Проходя между гранулами, турбулентный поток пара интенсивно вытесняет воздух, находящийся в порах засыпки, и равномерно по всему объему нагревает полимерный материал, который окончательно вспенивается; образующийся конденсат под действием расширяющихся гранул отжимается к стенкам пресс-формы и удаляется через специальные дренажные отверстия.

Пресс-формы для пенополистироловых моделей.Общими требованиями к материалам для изготовления пресс-форм являются высокие теплопроводность, стойкость против коррозии при контакте с теплоносителем (горячей водой, паром), достаточная механическая прочность и минимальная адгезия к пенополистиролу.

Для быстрого нагрева гранул, снижения затрат на теплоноситель и равномерного протекания процесса формирования моделей на всех стадиях корпусы пресс-форм делают равностенными (8..10 мм). Тем не менее, пресс-форма должна быть достаточно прочной и жесткой, так как в ее рабочей полости возникает давление от вспенивающегося полистирола до 0,6 МПа.

Конструктивное оформление пресс-форм должно обеспечивать возможность извлечения из нее модели, иметь системы центрирования и крепления отдельных частей, загрузки гранул, подачи теплоносителя, толкателей, охлаждения и крепления к машине при механизированном изготовлении и т.д. В целом пресс-форма тем сложнее и дороже, чем сложнее изготавливаемая в ней модель, а также чем полнее степень механизации и автоматизации процесса изготовления модели.

Изготовление моделей из пенополистироловых плит. В качестве материала используют готовые пенополистироловые плиты.

Пенополистирол легко обрабатывается на обычных деревообрабатывающих станках.

Одним из способов обработки пенополистирола является обработка горячей электронагреваемойнихромовой проволокой.

Обычно сложные модели изготовляют из отдельных частей простой геометрической формы с последующим их склеиванием. Мелкие галтели выполняют клейкой лентой, при больших радиусах их также изготовляют из отдельных конструктивных элементов.

Для соединения составных частей модели, элементов литниковой системы, блоков моделей широко применяют полимерные клеи, нерастворимые в воде, которые обеспечивают быстрое склеивание, не содержат растворителей пенополистирола и не влияют на характер его газификации. Соединение частей модели можно выполнять термической сваркой или сваркой растворением.

Собранные модели и модельные блоки покрывают противопригарной краской или суспензией толщиной 0,2..2,0 мм. После сушки покрытие предохраняет отливку от пригара и повышает прочность модели. Важным показателем покрытия является его газопроницаемость,которая должна обеспечивать выход газов, образующихся при газификации, из зазора между моделью и расплавом.

Процесс формовки осуществляют следующим образом. На дно опоки-контейнера 3 насыпают спой сухого песка 4 толщиной 100..150 мм и его уплотняют вибрацией. Затем в опоку устанавливают модель или блок моделей 6 и заполняют опоку песком при одновременной вибрации.

Опока-контейнер также имеет в стенках отверстия для выхода газа, закрытые металлической сеткой. Для обеспечения высокой газопроницаемоти формы предпочтительно, чтобы зерна песка имели угловатую форму. Особые требования предъявляются к литниковым системам. Они должны обеспечивать плавное и безударное движение металла во время заливки и определенную скорость его подъема в форме. Турбулентный режим течения металла является причиной разрушения песчаной стенки. Такой режим возникает в стояке, поэтому на модель стояка наносят прочное керамическое покрытие или выполняют его из керамических трубок. При литье по газифицируемым моделям не используют выпоры и открытые прибыли.

После получения отливки и выбивки форм песок просеивают и охлаждают, так как из-за низкой термостойкости моделей применять горячий песок нельзя.

Формы для получения массивных и сложных отливок, а также крупных отливок в единичном и мелкосерийном производстве изготовляют из формовочных смесей.

Наиболее предпочтительны самотвердеющие жидкоподвижные смеси (ЖСС), которые имеют необходимые прочность и газопроницаемость, позволяют уменьшить опасность деформации модели при формовке.

Также широко используют сыпучие пластичные твердеющие смеси: песчано-цементные, смеси со смоляным связующим.

Заливка форм. Режимы этого этапа оказывают решающее влияние на качество получаемых отливок. Предпочтительным вариантом является плавное поступление металла в форму снизу с оптимальной скоростью и последовательная газификация модели снизу вверх.

На рисунке представлена схема заполнения металлом формы с газифицируемой моделью. Идеальный случай, когда скорость подъема металла при заданной температуре соответствует скорости плавления модели, т.е. когда происходит замещение материала модели жидким металлом. В постоянном зазоре между металлом и моделью возникает давление газа, достаточное для его интенсивной фильтрации в форму и предупреждения возможного обрушения формы в зазоре при использовании песка без связующего. Жидкая фаза полистирола успевает разложиться до газообразных и твердых составляющих. Причем твердые частички углерода фильтруются через стенки формы, вместе с газовой составляющей.

3. Литье по моделям, полученным методом лазернойстереолитографии

Суть процесса. Этот процесс предназначен для изготовления опытных партий отливок деталей разного назначения в автомобилестроении, авиастроении, ракетной и космической технике, его используют для медицинских целей и получения художественных изделий.

Лазерная стереолитография (ЛС) основана на полимеризации, фотоинициированной лазерным излучением, а так же излучением ртутных или люминесцентных ламп. В основе этой технологии - создание с помощью инициирующего (например, лазерного) излучения в жидкой реакционноспособной среде активных центров (радикалов, ионов, активированных комплексов), которые, взаимодействуя с молекулами с молекулами мономера, вызывают рост полимерных цепей, т.е. процесс полимеризации. Вследствие полимеризации происходит изменение фазового состояния среды - в обработанной области образуется твердый полимер.

Особенности технологического процесса. Технология предусматривает создание трехмерной электронной модели будущей отливки системой САD, которая разбивается на тонкие слои. Затем на лазерной стереолитографической установке эти слои реально воссоздаются и соединяются воедино. В результате выстраивается физический объект в виде мастер-модели из фотополимера для литья по выжигаемым моделям.

Полученная модель с литниковой системой формуется в гипсодинасовой смеси. Форму прокаливают до полного удаления мастер-модели. Для обеспечения высокого качества отливок заливку форм можно производить на установке для центробежного литья. Затем форму разрушают, отделяя литниковую систему и зачищая детали.

Преимущества процесса - резкое (в 5-10 раз) сокращение времени на разработку и внедрение новых изделий; значительное сокращение времени и средств на технологическую подготовку производства, полное исключение ручного труда при изготовлении мастер-модели; изготовление сложных деталей (моделей) и оснастки, спроектированных в разных САПР; достижение высокой точности изготовляемых отливок.

Заключение

Основой повышения экономической эффективности литейного производства, конечно же, является технический прогресс. Технический прогресс - это процесс совершенствования производства, технологических методов и форм организации труда и производства, состоящий в непрерывном совершенствовании производства на базе новой техники, научных достижений и передового опыта. К основным направлениям технического прогресса относятся: Электрификация производства - широкое применение электроэнергии для технологических процессов, орудий труда, управления и контроля производства. Комплексная механизация и автоматизация производства - замена ручного труда все боле сложным комплексом машин-автоматов, выполняющих основные и вспомогательные технологические операции и процессы контроля и управления. Особенно важным это направление является для литейного производства, представляющего комплекс трудоемких и тяжелых работ. Все более широко внедряются автоматические комплексы изготовления форм, приготовления формовочной и стержневой смеси, изготовления стержней, заливки металла в формы, выбивки и очистки отливок. Химизация производства - применение достижений современной химии - новых В литейном производстве широко используют новые связующие, затвердевающие при контакте с нагретой модельной оснасткой, а также холоднотвердеющие связующие. Литье оболочковое, по выплавляемым моделям и по газифицируемым моделям является отражением широкого использования достижений химии в литейном производстве. Таким образом, технический прогресс в литейном производстве базируется на достижениях естественных наук и их приложении к решению непосредственно производственных задач.

Список литературы

1. Технология литейного производства: специальные виды литья: учебник для студ. высш. учеб. Заведений/Э.Ч. Гини, А.М. Зарубин, В.А. Рыбкин; под ред. В.А. Рыбкина. - 2-е изд., стер. - М.: Издательский центр «Академия», 2007. - 352 с.

Размещено на Allbest.ru

...

Подобные документы

    Процесс изготовления керамических оболочек, выплавления моделей и литья в разъемные формы. Технология получения крупногабаритных деталей литьем по выплавляемым моделям и керамических оболочковых форм. Новая концепция мелкосерийного литейного производства.

    курсовая работа , добавлен 26.02.2013

    Описание техники литья зубопротезных деталей по выплавляемым моделям из моделировочного воска в формах из огнеупорного материала по моделям. Борьба с усадкой сплавов и восковых композиций. Технология изготовления форм. Операции по обработке отливок.

    презентация , добавлен 16.04.2016

    Понятие и отличительные особенности литья по газифицируемым моделям как технологии, позволяющей получить отливки по точности равные литью по выплавляемым моделям при уровне затрат сопоставимом с литьем в землю. Исследование и оценка его преимуществ.

    презентация , добавлен 26.05.2015

    Сущность технологии литья по выплавляемым моделям. Процесс изготовления разрезных пресс-форм. Суть и назначение обработки конструкционных материалов резанием. Рабочие и вспомогательные движения в металлорежущих станках. Подготовка порошков к формованию.

    реферат , добавлен 11.10.2013

    Выбор метода литья по выплавляемым моделям для изготовления лопатки диффузора. Обоснование технологических процессов. Основные операции для изготовления заготовки. Припуски и допуски на заготовку, применение оборудования. Нормирование расхода материала.

    курсовая работа , добавлен 06.04.2015

    Материалы и инструменты, рабочее место ювелира. Инструменты для произведения ювелирных изделий. Литье по выплавляемым моделям в производстве украшений. Использование 3D-моделирования, применение формомассы, елки. Сущность центробежного и вакуумного литья.

    дипломная работа , добавлен 29.03.2013

    Структура цеха литья по выплавляемым моделям, его производственная программа. Выбор режима работы цеха и фондов времени. Условия работы детали, требования к ее функциональности. Обоснование и выбор способа изготовления отливки. Описание конструкции печи.

    дипломная работа , добавлен 06.04.2015

    Процесс получения ювелирных изделий литьем по выплавляемым моделям. Особенности изготовления резиновых пресс-форм, восковых моделей, литейных форм. Этапы отделки и художественной обработки ювелирных изделий. Методы литья пластмасс, типы изделий.

    реферат , добавлен 16.05.2010

    Изучение технологии переплава шихтовых заготовок в литейном цехе. Требования к процессу плавки жаропрочных сплавов при литье лопаток. Описание вакуумной плавильной установки с подогревом форм, принцип ее работы, параметры и технические характеристики.

    контрольная работа , добавлен 13.06.2012

    Производственная программа литейного цеха и режим его работы. Подбор и краткое описание необходимого оборудования. Технологический процесс изготовления отливок способом литья по выплавляемым моделям. Расчеты инвестиционных затрат и срока окупаемости цеха.

Технологический процесс литья драгоценных металлов и сплавов, от изготовления модели до получения необходимого количества отливок, делится на следующие стадии:

1. Изготовление мастер модели.

2. Изготовление резиновых пресс-форм.

3. Изготовление восковых моделей.

4. Изготовление восковой елочки.

5. Изготовление литейных форм.

6. Заливка металла в опоку.

7. Очистка отливок.

Рассмотрим каждую стадию в отдельности.

1.Изготовление мастер-модели.

Для дублирования ювелирных изделий методом литья необходимо изготовление мастер-модели будущих изделий. Мастер-модель изготавливается из специального воска, пластика или металла. Модели, изготовленные из модельного воска или пластика, отливают из металла и обрабатывают.

Металл, из которого делают мастер-модель, может быть различным – латунь, медь, золото, серебро, платина или любой другой твердый металл с температурой плавления более 300 градусов Цельсия. Мастер-модель изготавливают с учетом усадки резины, воска и металла. Нельзя допускать ошибки и неточности при изготовлении мастер-модели, так как, все дублированные изделия будут повторять эти ошибки и неточности.

На законченную мастер-модель желательно нанести слой никеля, родия или сплава «олово-никель».

Мастер-модель должна быть толще, чем готовое ювелирное изделие примерно на 10%, что бы учесть усадку резины, воска и золота, а так же припуски на опиловку и полировку. Например, мастер-модель для кольца размером 16 должна быть изготовлена размером 16,5.

После изготовления мастер-модели, к ней припаивают литниковый стержень диаметром 2-3,5 мм. Концы литниковых стержней делают в форме конуса по размеру подходящему к соплу воскового инжектора.

Литниковая система должна обеспечить правильное распределение воска, и в конечном итоге, металла к различным частям отливки, не допустив при этом разрушения формы, а так же завихрения при движении металла по литнику.

2 Изготовление резиновых пресс-форм.

Для получения резиновой пресс-формы необходимо иметь следующее оборудование и материалы.

1. Вулканизационный пресс.

2. Формовочную резину.

3. Металлическую прямоугольную обойму (формовочную опоку).

4. Формовочный нож.

5. Держатель для пресс-формы.

Вулканизационный пресс состоит из винтовой пары с маховиком, двух нагревательных плит и системы терморегулирования. Пресс предназначен для вулканизации сырой резины, которую устанавливают между двумя нагретыми плитами.

Модельная резина, используемая для изготовления пресс-форм, не должна вызывать коррозию мастер-модели и должна обладать хорошими эластичными свойствами. Резины используемые для изготовления пресс-форм бывают каучуковые и силиконовые. Кроме того, они подразделяются на усадочные и безусадочные.

Прямоугольная обойма (формовочная опока) изготавливается в разборном и цельном вариантах из легкого металла, например алюминия. Размеры отверстий опок могут быть различными в зависимости от формы мастер-модели. Кроме того, формовочная опока должна иметь широкие стенки, что бы она не ломалась при давлении вулканизатора.

Формовочный нож – это нож с лезвиями хирургического типа со стальной или пластмассовой ручкой, в которой имеются пазы для закрепления лезвий. Для разрезки формы применяют три типа лезвий – прямые заточенные с одной стороны, прямые заточенные с двух сторон и кривые. При разрезке резиновых пресс-форм очень важно, что бы лезвие было остро заточенное. Тупое лезвие приводит к облоям, создает заусеницы на восковках.

Держатели используются при разрезке резиновых пресс-форм. Они изготавливаются из металла и имеют обычно форму бельевой прищепки с острыми зубцами. Держатель крепко схватывает резину, что позволяет оттягивать ее при разрезке.

Силиконовые резины.

Силиконовые резины разработаны для изготовления пресс-форм, с использованием вулканизатора с температурой вулканизации 165-177 градусов Цельсия.

Технология изготовления резиновых пресс-форм из силиконовой резины.

1. Закрепить мастер-модель в формовочную опоку.

2. Разметить заготовки сырой резины.

3. Нарезать заготовки сырой резины.

4. Заполнить опоку резиной.

5. Установить опоку между двумя металлическими пластинами.

6. Вулканизировать опоку в течении 30-90 минут в зависимости от толщины при температуре 165-177 градусов Цельсия.

7. Извлечь пресс-форму из опоки.

8. Разрезать пресс-форму на две части.

9. Извлечь модель из пресс-формы.

Жидкие силиконовые резины.

Жидкие силиконовые резины разработаны для изготовления резиновых пресс-форм без использования вулканизатора. Затвердевание жидкой резины при комнатной температуре позволяет изготавливать модели, для которых температура и давление оказывают пагубное воздействие. Жидкие резины затвердевают около суток и практически не дают усадки.

В России с использованием импортных компонентов производится жидкая силиконовая резина ЛАСИЛ-Т. Это прозрачная высокопрочная двухкомпонентная резина холодного отверждения. Прозрачность резиновых форм изготовленных из ЛАСИЛ-Т существенно облегчает их разрезку, а также позволяет контролировать заливку воска.

Технология изготовления резиновых пресс-форм из жидкой резины.

1. Подготовить модель к заливке резиновой смесью. Для этого надо очистить ее поверхность от посторонних частиц, смазать вазелином или мыльным раствором для облегчения последующего отделения резины от модели.

3. Тщательно перемешать компоненты шпателем, избегая при этом перегрева смеси выше 35 градусов Цельсия.

4. Вакуумировать смесь 1-2 минуты для удаления пузырьков воздуха. Для этого необходимо поместить смесь в вакуумную камеру, добиваясь «поднятия» смеси (увеличения объема) и последующего «опадания».

5. Аккуратно залить приготовленную смесь в формовочную опоку поверх модели, избегая при этом захвата воздушных пузырьков. При комнатной температуре смесь полимеризуется за 18-24 часа. При повышении температуры смесь полимеризуется существенно быстрее, но при этом заметно увеличивается усадка резины.

6. Извлечь резиновую пресс-форму из формовочной опоки.

7. Разрезать пресс-форму на две части и извлечь модель.

3. Литье воска под давлением.

Воск нагнетается в резиновую пресс-форму при помощи воскового инжектора.


крышка


Нагревательный элемент

Схема воскового инжектора

Для повышения качества изготовления восковых моделей, многие процессы в современных восковых инжекторах автоматизированы. Литейщик только один раз подбирает все необходимые параметры для заполнения пресс-формы воском. В последующем все операции, включающие в себя сжатие половинок пресс-формы, доставка ее к соплу, центровка и заполнение формы воском происходит автоматически. Кроме того, инжектора снабжаются вакуумным блоком, с помощью которого внутри пресс-формы создается разрежение, что способствует лучшему растеканию воска в полости пресс-формы. Разборка пресс-формы и извлечение восковой модели производится вручную. Современные восковые позволяют:

· Контролировать температуру воска с точностью до 1©.

· Удалять воздух из пресс-формы, обеспечивая безупречное ее заполнение воском.

· Обеспечивать получение любых восковых моделей, как толстых, так и тонких, и любой степени сложности.

· Уменьшить процент отходов воска.

Инжекторные воски.

Сырьем для получения восковых моделей являются инжекторные воски различных марок, выпускаемые в плитках и гранулах, различающиеся по свойствам и соответственно по цвету.

Все сорта инжекторных восков безопасны, не токсичны и не канцерогенны.

Для достижения оптимальных результатов необходимо правильно выбирать сорт воска, учитывая при этом характеристики формы и производственные требования. К каждой разновидности форм и к каждому сорту воска предъявляются свои требования относительно давления, температуры и времени выдержки. Правильная комбинация этих составляющих может быть найдена только экспериментальным путем.

Кроме того, надо учитывать, что характеристики формы меняются при повторном нагнетании в нее горячего воска. Правильная комбинация данных для холодной формы может оказаться неправильной при повторном использовании. Таким образом, промежуток времени необходимый для охлаждения пресс-формы между нагнетаниями в нее воска, так же является одной из составляющих процесса изготовления восковых моделей.

Технология изготовления восковых моделей.

1. Заполнить инжектор воском.

2. Включить инжектор и расплавить воск.

3. Установить температуру воска необходимую для заполнения конкретной формы. (62-72©).

4. Установить на входе регулирующего клапана инжектора необходимое давление (0,2-1,0 кг/кв.см.) в зависимости от формы и толщины модели.

5. Заполнить пресс-форму модельным воском.

6. Охладить пресс-форму в течение 2-3 минут и извлечь восковую модель.

7. Для получения большого количества восковых моделей процесс повторяется многократно.

Восковую модель из пресс-формы необходимо удалять сразу же после затвердевания, то есть через несколько минут после нагнетания. Если оставить восковую модель в резиновой пресс-форме надолго, то он высыхает. При этом портится пресс-форма, а воск становится слишком хрупким и ломким, что приводит к порче восковой модели.

Дефекты восковых моделей.

Вид дефекта Причина возникновения Способ устранения
Воздушные пузырьки в модели Недостаточное количество воска в инжекторе Заполнить инжектор воском
Воск слишком горячий или холодный Отрегулировать температуру воска
Недостаточный контакт между пресс-формой и соплом инжектора Установить пресс-форму параллельно плоскости основания инжектора
Давление слишком высокое Понизить давление
Форма не заполняется Давление слишком низкое Повысить давление
Воск холодный Повысить температуру воска
Литниковый канал слишком мал Увеличить литниковый канал
Инжектор забит Очистить сопло инжектора
Форма не заполняется Недостаточный отвод воздуха из формы (воздушные пробки в форме) Подправить надрезы в форме
Очистить надрезы формы
Форма переполняется Давление слишком высокое Понизить давление
Форма не закрыта должным образом Закрыть форму правильно
Воск слишком горячий Понизить температуру воска
Время нагнетания воска слишком велико Сократить время нагнетания
Восковая модель липкая, легко деформируется Форма вскрыта слишком рано Увеличить время остывания формы
Воск слишком горячий Понизить температуру воска
Усадки выше нормы Форма слишком холодная Нагреть форму
Температура воска слишком высокая Понизить температуру воска
Давление слишком низкое Повысить давление
Заменить воск
Недостаточная чистота поверхности Форма слишком холодная Нагреть форму
Температура воска слишком низкая Увеличить температуру воска
Воск оплавляется (заусенцы на поверхности модели) Давление слишком высокое Понизить давление
Форма не собрана должным образом Правильно собрать форму
Половинки формы слабо сдавлены между собой Придавить форму сильней
Воск слишком горячий Понизить температуру воска
Надрезы формы заплавлены, засорены или забиты воском Очистить надрезы формы
Недостаточно надрезов Сделать дополнительные надрезы
Трещины в восковой модели Время остывания восковой модели слишком велико Сократить время остывания
Выбран хрупкий сорт воска Выбрать более пластичный воск
Форма разрезана не должным образом. Извлечение восковой модели затруднено Переделать пресс-форму для достижения легкого извлечения модели
Оседание (для крупных моделей) Неправильно выбран сорт воска Выбрать воск с меньшей степенью усадки
Время нагнетания воска слишком мало Увеличить время нагнетания воска
Давление слишком низкое Повысить давление
Слишком узкое литниковое отверстие Увеличить литниковый канал
Воск слишком горячий Понизить температуру воска

4. Изготовление воскового дерева.

Изготовленные восковые модели собираются в единый блок – восковое дерево. Для изготовления воскового дерева требуется следующее оборудование и материалы.

· Восковый стояк

· Резиновая подставка - уплотнитель

· Держатель для воскового дерева

· Электрошпатель

Для изготовления воскового стояка используется специальный (литниковый) воск, который при выжигании выгорает быстрее, чем воск, из которого изготовлены модели. Это способствует свободному вытеканию восковых форм из литьевой опоки.

Стояк должен быть достаточно толстым (диаметр 5-7мм.), что бы жидкий металл, прежде чем затвердеть, смог достичь самых тонких частей модельной полости. Восковый стояк предназначен: для крепления (припаивания) восковых моделей; удаления воска при выжигании и вытапливании; движения расплавленного металла в модельную полость; подпитки отливок в процессе кристаллизации; уменьшения турбулентности при движении расплавленного металла по полости литейной формы. Изготавливается восковый стояк путем нагнетания литникового воска в металлическую пресс-форму при помощи воскового инжектора.

Резиновая подставка уплотнитель предназначена для уплотнения литейной формы (опоки), предотвращения вытекания формовочной массы и крепления воскового дерева внутри литейной формы. Представляет собой резиновый круг с наружными стенками, соответствующими по внутреннему диаметру наружному диаметру опоки, и глухим отверстием в середине круга предназначенным для крепления воскового дерева. Изготавливается путем вулканизации сырой резины в специальных, заданных размеров и конфигурации формах.

Держатель для воскового дерева предназначен для удобного припаивания восковых моделей на восковый стояк. Держатель устроен так, что бы при сборке воскового дерева, восковый стояк с уплотнителем можно было поворачивать вокруг нескольких осей. Это обеспечивает, при сборке дерева, доступ электрошпателем к любой точке воскового стояка, исключая повреждение уже напаянных восковых моделей.

Электрошпатель предназначен для припаивания восковых моделей к восковому стояку. Представляет собой обыкновенный паяльник с набором наконечников различной конфигурации и устройством для регулировки температуры.

Технология сборки воскового дерева.

1. Изготовить восковый стояк.

2. Закрепить восковый стояк на резиновую подставку – уплотнитель.

3. Установить восковый стояк с уплотнителем на держателе.

4. Прикрепить к стояку по кругу восковые модели при помощи электрошпателя. Угол между восковым стояком и литником восковой модели должен быть равен от 45 до 80 градусов. Расстояние между ближайшими точками соседних моделей не менее 3 мм. При креплении восковок к литнику необходимо сначала сделать в нем лунку с помощью электрошпателя. Затем вставить в эту лунку литник восковой модели, и пропаять, проводя наконечником нагретого электрошпателя вокруг места контакта литников.

1. Восковое дерево должно собираться из восковых моделей приблизительно одинаковой толщины стенок в сечениях. Это необходимо потому, что при заливке металла в опоку в зависимости от толщины стенок восковых моделей устанавливается температура заливки сплава, то есть для моделей с толстыми стенками температура заливки меньше, чем для моделей с тонкими стенками.

2. Если все же необходимо отливать модели с тонкими и толстыми стенками одновременно, то тонкие модели следует располагать на вершине елочки и ближе к стволу, а толстые внизу и ближе к внешней стороне. Огнеупорная смесь (формовочная масса) у краев опоки имеет более низкую температуру (что нужно для толстых моделей), чем в центре опоки.

3. Толстые восковые модели не должны размещаться на елочке своими большими поверхностями близко друг к другу. Надо устанавливать модели так, что бы малые поверхности одних моделей располагались около больших поверхностей других. Когда металл залит в опоку, большие поверхности, расположенные близко друг к другу, будут дольше остывать из-за излучения тепла друг от друга. Это может привести к порам в отливке.

4. При изготовлении воскового дерева модели следует располагать под острым углом к восковому стояку. Такое расположение облегчает выжигание воска, а так же способствует плавной заливке расплавленного металла по всем полостям литейной формы.

5. Расстояние от верхушки литниковой чаши до нижнего ряда восковых моделей должно составлять не менее 10мм. Нижний ряд воскового дерева, расположенный непосредственно около литниковой чаши, не всегда хорошо заполняется металлом, то есть, возможно образование недоливов.

6. Изготовление литейных форм.

Следующий этап работы заключается в том, что восковое дерево, помещают в опоку и заливают огнеупорной гипсовой смесью (формовочной массой).

Формовочная масса состоит их химически чистого кристоболита, высокопрочного гипса, кремнезема, а так же модифицирующих веществ (замедлителей), регулирующих скорость затвердевания гипса.

Кристоболит – это минерал вулканической породы, его получают, нагревая кремнезем до температуры 1470-1670©. Формовочная масса, содержащая кристоболит не растрескивается при заливке расплавленного металла.

Гипс – используется в формомассе как связующий материал.

Кремнезем – это двуокись кремния SiO2. Он действует на огнеупорную смесь как стабилизирующий фактор при нагревании для выжигания воска и охлаждения непосредственно перед отливкой.

Модифицирующие вещества – это специальные добавки (борная кислота, сернокислый алюминий, мочевина и т.д.) которые снижают окисляемость сплавов, а так же замедляют схватывание гипса.

При выборе формовочной массы необходимо обращать внимание на следующие ее характеристики:

1. Формомасса должна выдерживать требуемую для ее прокаливания температуру (760©), не давая при этом трещин.

2. Формомасса должна выдерживать температуру заливки металла (для золота около 1020©), а так же давление расплавленного металла, который затекает в форму с большой скоростью.

3. Формомасса не должна содержать химически вредных веществ, которые могут привести к коррозии или окислению опоки и отливок.

4. Формомасса должна позволять быстрое и легкое извлечение отливок из опоки после литья.

В настоящее время имеются превосходные формовочные смеси, выпускаемые различными зарубежными фирмами:

1. KERRCast (США)

Предназначена для работы с золотом и серебром. Имеет мелкозернистую структуру. В силу своих превосходных характеристик, на сегодняшний день является самой используемой ювелирами. Позволяет легко отделять форму в холодной воде.

Основные характеристики:

Время работы:……………………………..9-10мин.

Максимальная температура обжига:……..не более760©.

Температура металла при заливке:………не более 1093©.

2. Hoben International (Англия)

GoldStar 21 и GoldStar Ultima

Представляют собой формовочные смеси повышенной термической стойкости. При характеристиках близких к SatinCast 20 имеют более низкую цену. GoldStar Ultima специально разработана для высокотемпературных сплавов, таких как белое золото и другие сплавы температура плавления которых не превышает 1300©.

Основные характеристики:

Время работы:……………………………..7,5-9мин.

Время прокаливания опоки:……………...не менее 6 часов.

Максимальная температура обжига:…….не более740©.

Время работы:……………………………..9-11мин.

Время затвердевания опоки:……………..10-11мин.

Время прокаливания опоки:……………...не менее 6 часов.

Максимальная температура обжига:…….не более850©.

Температура металла при заливке:………не более 1300©.

3. SRS Ltd (Англия)

Eurovest-exstra, Eurovest-standart, Eurovest-E2

Имеют уникальный состав, разработанный для повышения устойчивости к термоудару во время циклов нагревания и охлаждения. У них высокие прочностные характеристики, они легко смачиваются и разводятся водой, давая при этом тонкую, жидкую консистенцию. Это приводит к образованию поверхностей высокого качества и позволяет использовать эти формомассы для всех металлов и их сплавов. Их можно использовать как для отливки крупных изделий, так и для тонкой филигранной работы.

Основные характеристики:

Время работы:……………………………..8-9мин.

Время затвердевания опоки:……………..11-12мин.

Время прокаливания опоки:……………...не менее 6 часов.

Максимальная температура обжига:…….не более 750©.

Температура металла при заливке:………не более 1100©.

Подготовка воскового дерева для заливки формовочной массой.

Прежде чем залить формовочную массу в опоку, глее установлено восковое дерево, необходимо провести обезжиривание восковых моделей.

Обезжиривание воскового дерева проводят в спирте или четыреххлористом углероде. Обезжиривание производится путем окунания воскового дерева 5-6 раз в ванну с раствором. Затем просушить восковое дерево на воздухе.

Обезжиривание воскового дерева можно производить так же и с помощью мыльного раствора. Его готовят, растворив 7-8 граммов стирального порошка в 1 литре теплой (35-40©) воды. После этого восковое дерево промывают в холодной воде и просушивают с помощью вентилятора.

Для обезжиривания можно так же использовать препараты изготовленные специально для этих целей:

Film-o-wax раствор, снижающий поверхностное натяжение. Наносится на восковые модели с помощью мягкой кисти или пульверизатором.

Rio-vacu-film смачивающий раствор, предотвращающий образование воздушных пузырьков на поверхностях моделей во время заливки формомассы.

На многих предприятиях не пользуются смачивающими растворами, считая, что хорошее вакуумирование опок достаточно для получения хорошего результата. Однако практика показывает – без использования смачивающих растворов – нельзя получить качественные отливки.

Опоки для литья.

Опоки для литья это трубы из нержавеющей стали разного диаметра и разной высоты. Опоки для вакуумного литья имеют более сложную форму. На поверхности этих опок имеется множество отверстий, через которые происходит всестороннее вакуумное всасывание и быстрое остывание краев опоки после заливки расплава.

Опоки должны плотно входить в резиновые уплотнители, что бы не было утечки формомассы. Перед использованием, опока должна быть тщательно очищена от остатков старой формомассы, а внутреннюю ее поверхность необходимо очистить от ржавчины с помощью железной щетки. Размеры опок выбирают в зависимости от количества отливок, их габаритов и возможностей литейной машины. Опока размером 100x150 означает, что она имеет диаметр 100мм. и высоту 150мм.

Технологический процесс получения литейных форм

Состоит из следующих технологических операций:

1. Приготовление водяной суспензии.

2. Перемешивание смеси.

3. Вакуумирование смеси

4. Вибровакуумирование.

5. Вытапливание воска.

6. Отжиг опоки.

Приготовление водяной суспензии.

Для приготовления водяной суспензии рекомендуется соотношение «порошок-вода» 100-40 или 100-38. Это означает, что для приготовления суспензии следует 100 грамм порошка смешивать с 40 мл. или с 38мл. воды. Соотношение 100-38 используют для обычного литья, а 100-40 для литья тонких филигранных изделий. Воду отмеряют с помощью мерительной емкости, а порошок взвешивают на весах.

Температура суспензии должна быть около 20©.

Для определения массы воды требуемой для заполнения опоки, содержащей восковые модели, надо осторожно залить опоку водой комнатной температуры, а затем вылить воду в мензурку. Если известна масса воды, требуемой для заливки в опоку, то массу порошка можно вычислить следующим образом:

Заливаем опоку

Перемешивание смеси

Перемешивают порошок с водой, с целью получить однородную массу при помощи миксера. При длительном и тщательном замешивании ускоряется процесс схватывания, и получаются качественные отливки с более гладкими поверхностями. Нельзя перемешивать смесь слишком быстро. Это приводит к поднятию воды в верхнюю часть опоки, поскольку она легче, чем порошок формомассы и как следствие, к образованию дефектов на отливках.

Вакуумирование смеси.

Полученная суспензия помещается под вакуумный колпак для удаления воздуха из суспензии. Если воздух из суспензии не удалить, то он прилипает к восковым моделям в виде воздушных пузырьков, что приведет к дефектам на отливках. Вакуумирование производится при давлении 1400Па в течение 2-3 минут.

При вакуумировании суспензии, воздух из-под колпака удаляется за счет снижения давления. Когда давление над суспензией достаточно понизится, суспензия в емкости начнет кипеть, что приведет к полному удалению из нее воздуха. Затем суспензию медленно, что бы не поломать восковые модели заливают в опоку до тех пор, пока уровень суспензии не поднимется не менее чем на 10мм. выше восковых моделей.

Опоки, залитые суспензией помещают под вакуумный колпак, установленный на вибрационном столе. Вибрация и одновременное вакуумирование позволяют суспензии полностью обтекать восковые модели, и окончательно удаляет пузырьки воздуха. Процесс продолжается от 1 до 2 минут при давлении 1400 Па. За это время суспензия снова сильно поднимается, затем оседает и начинает кипеть.

Современное оборудование позволяет объединить операции приготовления, вакуумирования, перемешивания и заливки опок суспензией в единую операцию при помощи вакуумного миксера. Вакуумный миксер удаляют газы из компонентов перед смешиванием, смешивает и вакуумирует суспензию, имеет устройство для заливки и вакуумирования опок. Он позволяет менять скорости перемешивания в зависимости от типа формомассы, а так же программировать время перемешивания, параметры вакуумирования и виброобработки.

Вытапливание воска и обжиг опоки.

После того как формомасса затвердеет, надо снять с нее резиновую подставку уплотнитель и удалить излишки формомассы на ее краях и боковых стенках. Модельный воск вытапливается паром, или в прокалочной печи во время обжига опоки. Операция вытапливания воска с последующим обжигом является важнейшей фазой в литейном деле. Поэтому обжиг опок необходимо проводить в строгом соответствии с разработанными режимами прокаливания формовочных масс. Рекомендуемый изготовителем режим прокаливания обычно прилагается к каждой упаковке с формовочной массой. При отклонении от указанных режимов прокаленные опоки могут дать трещины, неровности и другие дефекты на отливках. При температуре 90-100© большая часть воска расплавляется и вытекает через литниковое отверстие. Пар, образующийся в результате нагревания опоки с влажной формомассой, помогает удалению воска из полостей формы. Оставшаяся часть воска при последующем нагревании до 550© превращается в сажу. При температуре 750© сажа соединяется с кислородом воздуха, образуя газообразное соединение, и полностью удаляется. При этом печь должна вентилироваться. В современных производствах используются прокалочные печи с программируемыми регуляторами температуры. Преимущества таких печей заключаются в том, что они позволяют экономить рабочее время. Запрограммировав печь, можно прокаливать опоки в нерабочее время, подготавливая их к заливке на следующий день.

1. Опоки, залитые формовочной массой нельзя долго хранить в холодной печи. Если залитые опоки нужно хранить долго, то их заворачивают в мокрые тряпки. Если формомасса высохнет, то при вытапливании воска из опоки он будет впитываться в поры формомассы, осложняя в последствии процесс заливки опок расплавленным металлом.

2. При вытапливании воска из опоки ее необходимо медленно прогреть до 200©. В противном случае, если прогревание вести быстро, то пар, образовавшийся в модельных полостях, расширяется быстрее, чем выходит через литниковое отверстие, и как следствие может произойти деформация модельных полостей, что приведет к браку отливок.

3. Камера печи, где происходит обжиг опок, должна вентилироваться. При этом печь должна вентилироваться. Недостаточная вентиляция прокалочной печи, приводит к забиванию пор формомассы золой, в особенности при большом количестве одновременно прокаливаемых опок, или при очень кратковременных циклах обжига опок.

4. Нельзя нагревать опоку выше максимальной температуры указанной фирмой изготовителем (как правило, 760©), При превышении максимальной температуры происходит разрушение гипсовой связки, кроме того, металл, залитый в такую опоку, будет медленно остывать, что приводит к пористости и плохой чистоте поверхности отливок.

KEER полный цикл 100х200мм.

2 часа 149©

2 часа 371©

2 часа 482©

4 часа 732©

2 часа температура заливки (580©)

При литье по выплавляемым моделям с принудительной заливкой металла в форму применяются различные литейные установки и устройства: центробежные литейные установки, ваккумные литейные установки, центробежно-ваккуумные литейные установки.