Самая большая скорость достигнутая человеком в космосе. Что мешает людям летать в космосе со скоростью света

Началось в 1957 году, когда в СССР был запущен первый спутник, «Спутник-1». С тех пор люди успели побывать на , а беспилотные космические зонды побывали на всех планетах, за исключением . Спутники, обращающиеся по орбитам вокруг Земли, вошли в нашу жизнь. Миллионы людей благодаря им имеют возможность смотреть телевизор (см. статью « «). На рисунке показано, как часть космического корабля возвращается на Землю с помощью парашута.

Ракеты

История освоения космоса начинается с ракет. Первые ракеты использовались для бомбардировок еще во время второй ми­ровой войны. В 1957 г. была создана раке­та, доставившая в космос «Спутник-1». Большую часть ракеты занимают баки с топливом. До орбиты добирается только верхняя часть ракеты, называемая полезным грузом . У ракеты «Ариан-4» три отдельных секции с топливными баками. Их называют ступенями ракеты . Каждая ступень толкает ракету на какое-то расстояние, после чего, опустев, отделяется. В итоге от ра­кеты остается только полезный груз. Первая ступень несёт 226 тонн жидкого топлива. Топливо и два ускорителя создают необходимую для взлета огромную масса. Вторая ступень отделяется на высоте 135 км. Третья ступень ракеты – её , работающие на жидком и азоте. Топливо здесь сгорает примерно за 12 минут. В результате, от ракеты «Ариан-4» Европейского космического агентства, остается только полезный груз.

В 1950-1960-х гг. СССР и США соревновались в освоении космоса. Первым пилотируемым космическим аппаратом был «Восток». Ракета «Сатурн-5» впервые доставила людей на луну.

Ракеты 1950-х- /960-х гг.:

1. «Спутник»

2. «Авангард»

3. «Юнона-1»

4. «Восток»

5. «Меркурий-Атлант»

6. «Джемини-Титан-2»

8. «Сатурн-1Б»

9. «Сатурн-5»

Космические скорости

Чтобы попасть в космос, ракета должна выйти за пределы . Если ее скорость будет недостаточна, она просто упадет на Землю, из-за действия силы . Скорость, необходимую для выхода в космос, называют первой космической скоростью . Она составляет 40000 км/ч. На орбите космический корабль огибает Землю с орбитальной скоростью . Орбитальная скорость корабля зависит от его расстояния до Земли. Когда космический корабль летит по орбите, он, в сущности, просто падает, но не может упасть, так как теряет высоту как раз настолько, насколько под ним уходит вниз, закругляясь, земная поверхность.

Космические зонды

Зонды - это беспилотные космические аппараты, посылаемые на дальние расстояния. Они побывали на всех планетах, кроме Плутона. Зонд может лететь до места на­значения долгие Годы. Когда он подлетает к нужному небесному телу, то выходит на орбиту вокруг него и посылает на Землю добытую информацию. «Миринер-10», единственный зонд, побывавший на . «Пионер-10» стал первым космическим зондом, покинувшим пределы Солнечной системы. До ближайшей звезды он долетит больше чем через миллион лет.

Некоторые зонды предназначены для посадки на поверхность другой планеты, либо они оснащены спускаемыми аппаратами, сбрасываемыми на планету. Спускаемый аппарат может собрать образцы грунта и доставить их на Землю для исследований. В 1966 году впервые на поверхность Луны опустился космический аппарат - зонд «Луна-9». После посадки он раскрылся, как цветок, и начал съемки.

Спутники

Спутник - это беспилотный аппарат, который выводят на орбиту, как правило, земную. Спутник имеет конкретную задачу - например, наблюдать за , передавать телеизображение, разведывать залежи полезных ископаемых: есть даже спутники-шпионы. Спутник движется по орбите с орбитальной скоростью. На рисунке вы видите снимок устья реки Хамбер (Англия), сделанный «Лэндсетом» с околоземной орбиты. «Лэндсет» может «рассмотреть на Земле участки площадью всего в 1 кв. м.

Станция - это тот же спутник, но предназначенный для работы людей на его бор­ту. К станции может пристыковываться космический корабль с экипажем и груза­ми. Пока в космосе работали только три долгосрочные станции: американский «Скайлэб» и российские «Салют» и «Мир». «Скайлэб» был выведен на орбиту в 1973 г. Ни его борту последовательно работали три экипажа. Станция прекратила свое существование в 1979 г.

Орбитальные станции играют огромную роль в изучении влияние невесомос­ти на организм человека. Станции будущего, такие как «Фридом», которую американцы строят сейчас при участии специалистов из Европы, Японии и Канады, будут использоваться для очень долго­срочных экспериментов или для промышленного производства в космосе.

Когда космонавт выходит из станции или корабля в открытый космос, он надевает скафандр . Внутри скафандра искусственно создается , равное атмосферному. Внутренние слои скафандра охлаждаются жидкостью. Приборы следят за давлением и содержанием кислорода внутри. Стекло шлема очень прочное оно выдерживает удары мелких камешков - микрометеоритов.

Одним из величайших достояний человечества является международная космическая станция, или МКС. Для ее создания и работы на орбите объединилось несколько государств: Россия, некоторые страны Европы, Канада, Япония и США. Этот аппарат свидетельствует о том, что можно добиться многого, если постоянно сотрудничать странам. Об этой станции знают все люди планеты и многие задаются вопросами о том, на какой высоте летает МКС и по какой орбите. Сколько космонавтов там побывало? А правда ли, что туда пускают туристов? И это далеко не все, что интересно человечеству.

Строение станции

МКС состоит из четырнадцати модулей, в которых располагаются лаборатории, склады, комнаты отдыха, спальни, хозпомещения. На станции даже имеется спортзал с тренажерами. Весь этот комплекс работает на солнечных батареях. Они огромны, величиной со стадион.

Факты об МКС

За время своей работы станция вызывала немало восхищений. Этот аппарат является величайшим достижением человеческих умов. По своей конструкции, назначению и особенностям его можно назвать совершенством. Конечно, может быть, лет через 100 на Земле начнут строить космические корабли другого плана, но пока что, на сегодняшний день, этот аппарат - достояние человечества. Об этом свидетельствуют следующие факты об МКС:

  1. За время своего ее существования на МКС космонавтов побывало около двухсот. Также здесь были туристы, которые просто прилетели посмотреть на Вселенную с орбитальной высоты.
  2. Станцию видно с Земли невооруженным глазом. Эта конструкция является самой большой среди искусственных спутников, и ее легко можно увидеть с поверхности планеты без какого-то увеличивающего устройства. Есть карты, на которых можно посмотреть, в какое время и когда аппарат пролетает над городами. По ним легко отыскать сведения о своем населенном пункте: увидеть расписание полета над регионом.
  3. Для сборки станции и поддержания ее в рабочем состоянии космонавты вышли более 150 раз в открытый космос, проведя там около тысячи часов.
  4. Управляется аппарат шестью астронавтами. Система жизнеобеспечения обеспечивает непрерывное присутствие на станции людей с момента ее первого запуска.
  5. Международная космическая станция - это уникальное место, где проводятся самые разные лабораторные эксперименты. Ученые делают уникальные открытия в области медицины, биологии, химии и физики, физиологии и метеонаблюдений, а также в других областях науки.
  6. На аппарате используются гигантские солнечные батареи, размер которых достигает площади территории футбольного поля с его конечными зонами. Их вес - почти триста тысяч килограмм.
  7. Батареи способны полностью обеспечивать работу станции. За их работой тщательно следят.
  8. На станции есть мини-дом, оснащенный двумя ванными и спортзалом.
  9. За полетом следят с Земли. Для контроля разработаны программы, состоящие из миллионов строк кода.

Космонавты

С декабря 2017 года экипаж МКС состоит из следующих астрономов и космонавтов:

  • Антон Шкаплеров - командир МКС-55. Он дважды был на станции - в 2011-2012 и в 2014-2015 гг. За 2 полета он прожил на станции 364 дня.
  • Скит Тингл - бортинженер, астронавт НАСА. Этот космонавт не имеет опыта космических полетов.
  • Норишиге Канаи - бортинженер, астронавт Японии.
  • Александр Мисуркин. Первый его полет был совершен в 2013 году длительностью 166 суток.
  • Макр Ванде Хай не имеет опыта полетов.
  • Джозеф Акаба. Первый полет совершил в 2009 году в составе «Дискавери», а второй полет был осуществлен в 2012 году.

Земля из космоса

Из космоса на Землю открываются уникальные виды. Об этом свидетельствуют фотографии, видеосъемки астронавтов и космонавтов. Увидеть работу станции, космические пейзажи можно, если посмотреть онлайн-трансляции со станции МКС. Однако некоторые камеры бывают выключенными, что связано с техработами.

Солнечная система уже давно не представляет особого интереса для фантастов. Но, что удивительно, и у некоторых ученых наши «родные» планеты не вызывают особого вдохновения, хотя они еще практически не исследованы.

Едва прорубив окно в космос, человечество рвется в неведомые дали, причем уже не только в мечтах, как раньше.
Еще Сергей Королев обещал в скором времени полеты в космос «по профсоюзной путевке», но этой фразе уже полвека, а космическая одиссея по-прежнему удел избранных - слишком дорогое удовольствие. Однако же два года назад HACA запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технического фундамента для космических полетов.


Эта беспрецедентная программа должна привлечь ученых, инженеров и энтузиастов со всего мира. Если все увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться, как на трамваях.

Так какие же проблемы нужно решить, чтобы звездные полеты стали реальностью?

ВРЕМЯ И СКОРОСТЬ ОТНОСИТЕЛЬНЫ

Звездоплавание автоматических аппаратов кажется некоторым ученым почти решенной задачей, как это ни странно. И это при том, что совершенно нет никакого смысла запускать автоматы к звездам с нынешними черепашьими скоростями (примерно 17 км/с) и прочим примитивным (для таких неведомых дорог) оснащением.

Сейчас за пределы Солнечной системы ушли американские космические аппараты «Пионер-10» и «Вояджер-1», связи с ними уже нет. «Пионер-10» движется в сторону звезды Альдебаран. Если с ним ничего не случится, он достигнет окрестностей этой звезды... через 2 миллиона лет. Точно так же ползут по просторам Вселенной и другие аппараты.

Итак, независимо от того, обитаем корабль или нет, для полета к звездам ему нужна высокая скорость, близкая к скорости света. Впрочем, это поможет решить проблему полета только к самым близким звездам.

«Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, - писал К. Феоктистов, - время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. Но на Земле-то за это время пройдет намного больше».

Согласно теории относительности, ход времени в двух движущихся одна относительно другой системах различен. Так как на больших расстояниях корабль успеет развить скорость очень близкую к скорости света, разница во времени на Земле и на корабле будет особенно велика.

Предполагается, что первой целью межзвездных полетов станет альфа Центавра (система из трех звезд) - наиболее близкая к нам. Со скоростью света туда можно долететь за 4,5 года, на Земле за это время пройдет лет десять. Но чем больше расстояние, тем сильней разница во времени.

Помните знаменитую «Туманность Андромеды» Ивана Ефремова? Там полет измеряется годами, причем земными. Красивая сказка, ничего не скажешь. Однако эта вожделенная туманность (точнее, галактика Андромеды) находится от нас на расстоянии 2,5 миллиона световых лет.



По некоторым расчетам, путешествие займет у космонавтов более 60 лет (по звездолетным часам), но на Земле-то пройдет целая эра. Как встретят космических «неадертальцев» их далекие потомки? Да и будет ли жива Земля вообще? То есть возвращение в принципе бессмысленно. Впрочем, как и сам полет: надо помнить, что мы видим галактику туманность Андромеды такой, какой она была 2,5 млн лет назад - столько идет до нас ее свет. Какой смысл лететь к неизвестной цели, которой, может, уже давно и не существует, во всяком случае, в прежнем виде и на старом месте?

Значит, даже полеты со скоростью света обоснованны только до относительно близких звезд. Однако аппараты, летящие со скоростью света, живут пока лишь в теории, которая напоминает фантастику, правда, научную.

КОРАБЛЬ РАЗМЕРОМ С ПЛАНЕТУ

Естественно, в первую очередь ученым пришла мысль использовать в двигателе корабля наиболее эффективную термоядерную реакцию - как уже частично освоенную (в военных целях). Однако для путешествия в оба конца со скоростью, близкой к световой, даже при идеальной конструкции системы, требуется отношение начальной массы к конечной не менее чем 10 в тридцатой степени. То есть звездолет будет походить на огромный состав с топливом величиной с маленькую планету. Запустить такую махину в космос с Земли невозможно. Да и собрать на орбите - тоже, недаром ученые не обсуждают этот вариант.

Весьма популярна идея фотонного двигателя, использующего принцип аннигиляции материи.

Аннигиляция - это превращение частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных. Наиболее изучена аннигиляция электрона и позитрона, порождающая фотоны, энергия которых и будет двигать звездолет. Расчеты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70% от скорости света.

Однако дальше начинаются сплошные проблемы. К сожалению, применить антивещество в качестве ракетного топлива очень непросто. Во время аннигиляции происходят вспышки мощнейшего гамма-излучения, губительного для космонавтов. Кроме того, контакт позитронного топлива с кораблем чреват фатальным взрывом. Наконец, пока еще нет технологий для получения достаточного количества антивещества и его длительного хранения: например, атом антиводорода «живет» сейчас менее 20 минут, а производство миллиграмма позитронов обходится в 25 миллионов долларов.

Но, предположим, со временем эти проблемы удастся разрешить. Однако топлива все равно понадобится очень-очень много, и стартовая масса фотонного звездолета будет сравнима с массой Луны (по оценке Константина Феоктистова).

ПОРВАЛИ ПАРУС!

Наиболее популярным и реалистичным звездолетом на сегодняшний день считается солнечный парусник, идея которого принадлежит советскому ученому Фридриху Цандеру.

Солнечный (световой, фотонный) парус - это приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.
В 1985 году американским физиком Робертом Форвардом была предложена конструкция межзвездного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звезд за 21 год.

На XXXVI Международном астрономическом конгрессе был предложен проект лазерного звездолета, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия. По расчетам, путь звездолета этой конструкции до звезды эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

«Маловероятно, что по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем. Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей Солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей».

Эти слова принадлежат не фантасту, а конструктору космических кораблей и космонавту Константину Феоктистову. По мнению ученого, ничего особо нового в Солнечной системе уже не обнаружится. И это при том, что человек пока долетел только до Луны...


Однако за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида.

Все это пока теория, однако первые шаги уже делаются.

В 1993 году на российском корабле «Прогресс М-15» в рамках роекта «Знамя-2» был впервые развернут солнечный парус 20-метровой ширины. При стыковке «Прогресса» со станцией «Мир» ее экипаж установил на борту «Прогресса» агрегат развертывания отражателя. В итоге отражатель создал яркое пятно 5 км в ширину, которое прошло через Европу в Россию со скоростью 8 км/с. Пятно света имело светимость, примерно эквивалентную полной Луне.



Итак, преимущество солнечного парусника - отсутствие топлива на борту, недостатки - уязвимость конструкции паруса: по сути, это тонкая фольга, натянутая на каркас. Где гарантия, что по дороге парус не получит пробоин от космических частиц?

Парусный вариант может подойти для запуска автоматических зондов, станций и грузовых кораблей, но непригоден для пилотируемых полетов с возвратом. Существуют и другие проекты звездолетов, однако они, так или иначе, напоминают вышеперечисленные (с такими же масштабными проблемами).

СЮРПРИЗЫ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Думается, путешественников во Вселенной поджидает множество сюрпризов. К примеру, едва высунувшись за пределы Солнечной системы, американский аппарат «Пионер-10» начал испытывать силу неизвестного происхождения, вызывающую слабое торможение. Высказывалось много предположений, вплоть до о неизвестных пока эффектах инерции или даже времени. Однозначного объяснения этому феномену до сих пор нет, рассматриваются самые различные гипотезы: от простых технических (например, реактивная сила от утечки газа в аппарате) до введения новых физических законов.

Другой аппарат, «Вояд-жер-1», зафиксировал на границе Солнечной системы область с сильным магнитным полем. В нем давление заряженных частиц со стороны межзвездного пространства заставляет поле, создаваемое Солнцем, уплотняться. Также аппарат зарегистрировал:

  • рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвездного пространства;
  • резкий рост уровня галактических космических лучей - высокоэнергетических заряженных частиц межзвездного происхождения.
И это только капля в море! Впрочем, и того, что сегодня известно о межзвездном океане, достаточно, чтобы поставить под сомнение саму возможность бороздить просторы Вселенной.

Пространство между звездами не пустое. Везде есть остатки газа, пыли, частицы. При попытке движения со скоростью, близкой к скорости света, каждый столкнувшийся с кораблем атом будет подобен частице космических лучей большой энергии. Уровень жесткой радиации при такой бомбардировке недопустимо повысится даже при полетах к ближайшим звездам.

А механическое воздействие частиц при таких скоростях уподобится разрывным пулям. По некоторым расчетам, каждый сантиметр защитного экрана звездолета будет непрерывно обстреливаться с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета. Или должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн).



Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны, тем паче, что по дороге можно нарваться не только на пыль, но и на что-то покрупнее, или попасть в ловушку неизвестного гравитационного поля. И тогда гибель опять-таки неминуема. Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями. Но тогда фактор времени делает эти полеты бессмысленными.

Получается, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя. Бессмысленно ломиться через пространство и время с помощью механической конструкции.

КРОТОВАЯ НОРА

Фантасты, стараясь побороть неумолимое время, сочинили, как «прогрызать дырки» в пространстве (и времени) и «сворачивать» его. Придумали разнообразные гиперпространственные скачки от одной точки пространства до другой, минуя промежуточные области. Теперь к фантастам присоединились ученые.

Физики принялись искать экстремальные состояния материи и экзотические лазейки во Вселенной, где можно передвигаться со сверхсветовой скоростью вопреки теории относительности Эйнштейна.



Так появилась идея кротовой норы. Эта нора осуществляет смычку двух частей Вселенной подобно прорубленному тоннелю, соединяющему два города, разделенные высокой горой. К сожалению, кротовые норы возможны только в абсолютном вакууме. В нашей Вселенной эти норки крайне неустойчивы: они попросту могут сколлапсировать до того, как туда попадет космический корабль.

Однако для создания стабильных кротовых нор можно использовать эффект, открытый голландцем Хендриком Казимиром. Он заключается во взаимном притяжении проводящих незаряженных тел под действием квантовых колебаний в вакууме. Оказывается, вакуум не совсем пуст, в нем происходят колебания гравитационного поля, в котором спонтанно возникают и исчезают частицы и микроскопические кротовые норы.

Остается только обнаружить одну из нор и растянуть ее, поместив между двумя сверхпроводящими шарами. Одно устье кротовой норы останется на Земле, другое космический корабль с околосветовой скоростью переместит к звезде - конечному объекту. То есть звездолет будет как бы пробивать тоннель. По достижении звездолетом пункта назначения кротовая нора откроется для реальных молниеносных межзвездных путешествий, продолжительность которых будет исчисляться минутами.

ПУЗЫРЬ ИСКРИВЛЕНИЯ

Сродни теории кротовых нор пузырь искривления. В 1994 году мексиканский физик Мигель Алькубьерре выполнил расчеты согласно уравнениям Эйнштейна и нашел теоретическую возможность волновой деформации пространственного континуума. При этом пространство будет сжиматься перед космическим кораблем и одновременно расширяться позади него. Звездолет как бы помещается в пузырь искривления, способный передвигаться с неограниченной скоростью. Гениальность идеи состоит в том, что космический корабль покоится в пузыре искривления, и законы теории относительности не нарушаются. Движется при этом сам пузырь искривления, локально искажающий пространство-время.

Несмотря на невозможность перемещаться быстрее света, ничто не препятствует перемещению пространства или распространению деформации пространства-времени быстрее света, что, как полагают, и происходило сразу после Большого взрыва при образовании Вселенной.

Все эти идей пока не укладываются в рамки современной науки, однако в 2012 году представители НАСА заявили о подготовке экспериментальной проверки теории доктора Алькубьерре. Как знать, может, и теория относительности Эйнштейна когда-нибудь станет частью новой глобальной теории. Ведь процесс познания бесконечен. А значит, однажды мы сможем прорваться чрез тернии к звездам.

Ирина ГРОМОВА

Наш читатель Никита Агеев спрашивает: в чем основная проблема межзвездных перелетов? Ответ, как и , потребует большой статьи, хотя на вопрос можно ответить и единственным символом: c .

Скорость света в вакууме, c, равна примерно тремстам тысячам километров в секунду, и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли бы экипажу автономно жить в космосе столько времени — космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик картриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении со скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенных в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

Корзников приводит расчеты, что при скорости более 0,1 С космический корабль не успеет изменить траекторию полёта и избежать столкновения. Он считает, что при субсветовой скорости космический корабль разрушится до достижения цели. По его мнению межзвёздное путешествие возможно только при существенно меньших скоростях (до 0,01 С). С 1950-60 гг. в США разрабатывался космический корабль с ядерно-импульсным ракетным двигателем для исследования межпланетного пространства «Орион».

Межзвёздный полёт - путешествие между звёздами пилотируемых аппаратов или автоматических станций. По словам директора Исследовательского центра Эймса (НАСА) Симона П. Уордена, проект двигателя для полётов в дальний космос может быть разработан в течение 15-20 лет.

Пусть полёт туда и полёт обратно состоят из трёх фаз: равноускоренного разгона, полёта с постоянной скоростью и равноускоренного торможения. Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину - с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения.

Для межзвездного полета пригодны не все типы двигателей. Расчёты показывают, что с помощью космической системы, рассмотренной в данной работе, можно достичь звезды Альфа Центавра… примерно за 10 лет». В качестве одного из вариантов решения проблемы предлагается использование в качестве рабочего вещества ракеты элементарные частицы, движущиеся со световой или околосветовой скоростью.

Какова скорость современных космических кораблей?

Выхлопная скорость частиц от 15 до 35 километров в секунду. Поэтому появились идеи снабжать межзвездные корабли энергией из внешнего источника. На данный момент этот проект неосуществим: двигатель обязан иметь скорость истечения 0.073 с (удельный импульс 2 миллиона секунд), при этом его тяга должна достигать 1570 Н (то-есть 350 фунтов).

Столкновение с межзвёздной пылью будет происходить на околосветовых скоростях и по физическому воздействию напоминать микровзрывы. В научно-фантастических произведениях нередко упоминаются методы межзвёздных перелётов, основанные на перемещении быстрее скорости света в вакууме. Самый большой экипаж состоял из 8 космонавтов (в его составе была 1 женщина), стартовавших 30 октября 1985 г. на корабле многоразового использования «Челленджер».

Расстояние до ближайшей звезды (Проксимы Центавра) составляет около 4,243 световых лет, то есть примерно в 268 тысяч раз больше расстояния от Земли до Солнца. Полёты на звездолётах занимают существенное место в научной фантастике.

В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Пригодность различных типов двигателей для межзвёздных полётов в частности была рассмотрена на заседании Британского межпланетного общества в 1973 г. доктором Тони Мартином (Tony Martin).

В ходе работ были предложены проекты большого и малого звездолётов («кораблей поколений»), способных добраться до звезды Альфа Центавра за 1800 и 130 лет соответственно. В 1971 году в докладе Г. Маркса на симпозиуме в Бюракане было предложено использовать для межзвёздных перелётов лазеры рентгеновского диапазона. В 1985 году Р. Форвардом была предложена конструкция межзвёздного зонда, разгоняемого энергией микроволнового излучения.

Космический предел скорости

Основная составляющая массы современных ракет - это масса топлива, требуемого ракете для разгона. Если удастся каким-нибудь образом использовать в качестве рабочего тела и топлива окружающую ракету среду, можно значительно уменьшить массу ракеты и достичь за счёт этого больших скоростей движения.

В 1960-е годы Бюссаром (англ.) была предложена конструкция межзвёздного прямоточного реактивного двигателя (МПРД). Межзвёздная среда состоит в основном из водорода. В 1994 году Джеффри Лэндис (англ.) предложил проект межзвёздного ионного зонда, которых получал-бы энергию от лазерного луча на станции.

Ракетный корабль по проекту «Дедал» оказался таким громадным, что строить его пришлось бы в открытом космосе. Одним из недостатков межзвездных кораблей является необходимость нести с собой энергосистему, что увеличивает массу и соответственно снижает скорость. Так электрический ракетный двигатель имеет характеристическую скорость в размере 100 км/с, что слишком медленно для полета к далеким звездам за приемлемый срок.