Платформа «Космос»: самая космическая станция железной дороги.

Мы так мало знаем о космосе, о том, сколько неведомых секретов он хранит. Никто не может даже приблизительно осознать тайны Вселенной. Хотя постепенно человечество движется к этому. С древних времен люди хотели понять, что же происходит в космосе, какие объекты, кроме нашей планеты, находятся в Солнечной системе, как разгадать тайны, которые они хранят. Множество загадок, которые скрывает далекий мир, привело к тому, что ученые начали задумываться о том, как человек может отправиться в космос для его изучения.

Так появилась первая орбитальная станция. А за ней - еще множество других, более сложных и мультифункциональных исследовательских объектов, нацеленных на покорение космического пространства.

Что такое орбитальная станция?

Это крайне сложная установка, предназначенная для того, чтобы отправлять исследователей и ученых в космос для проведения экспериментов. Она находится на земной орбите, оттуда ученым удобно наблюдать за атмосферой и поверхностью планеты, проводить прочие исследования. Подобные цели стоят и перед искусственными спутниками, но они управляются с Земли, то есть экипаж там отсутствует.

Периодически члены экипажа на орбитальной станции сменяются новыми, но происходит это крайне редко в связи с затратами на транспортировки в космосе. Кроме того, периодически туда отправляют корабли для перемещения необходимого оборудования, материального обеспечения и провизии для космонавтов.

У каких стран есть своя орбитальная станция

Как уже отмечалось выше, создание и тестирование установок подобной сложности - очень длительный и затратный процесс. Для него требуются не только серьезные средства, но и ученые, способные справиться с подобными задачами. Поэтому только крупные мировые державы могут себе позволить разрабатывать, запускать и содержать подобные устройства.

Орбитальными станциями обладают США, Европа (ЕКА), Япония, Китай и Россия. В конце ХХ века вышеуказанные государства объединились для создания Международной космической станции. Также в этом принимают участие и некоторые другие развитые страны.

Станция «Мир»

Один из наиболее успешных проектов по строительству космического оборудования - станция «Мир» производства СССР. Она была запущена в 1986 году (до этого проектирование и строительство осуществлялись более десяти лет) и продолжала функционировать до 2001 года. Орбитальная станция «Мир» создавалась буквально по кусочкам. Несмотря на то что датой ее запуска считается 1986 год, тогда была запущена только первая часть, в течение последних десяти лет на орбиту были направлены еще шесть блоков. Не один год вводилась в эксплуатацию орбитальная станция «Мир», затопление которой состоялось намного позже намеченного срока.

Провизия и прочие расходные материалы доставлялись на орбитальную станцию при помощи транспортных кораблей «Прогресс». За время существования «Мира» было создано четыре подобных корабля. Для со станции на Землю тоже существовали свои специальные установки - баллистические ракеты под названием «Радуга». Всего за период существования станции на ней побывало больше сотни космонавтов. Наиболее длительным было пребывание на ней российского космонавта

Затопление

В 90-х годах прошлого века на станции начались множественные проблемы, и было решено прекратить исследования. Это вызвано тем, что она просуществовала намного дольше предполагаемого срока, первоначально она должна была работать около десяти лет. В год затопления орбитальной станции «Мир» (2001) было принято решение направить ее в южную область Тихого океана.

Причины затопления

В январе 2001 года в России было решено затопить станцию. Предприятие стало нерентабельным, постоянная необходимость ремонтов, слишком дорогостоящее обслуживание и аварии сделали свое дело. Также было предложено несколько проектов ее переоборудования. Орбитальная станция «Мир» представляла собой ценность для Тегерана, который был заинтересован в том, чтобы отслеживать передвижения и пуски ракет. Кроме того, высказывались вопросы о значительном сокращении которые придется ликвидировать. Несмотря на это, в 2001-м (год затопления орбитальной станции «Мир») она была ликвидирована.

Международная космическая станция

Орбитальная станция МКС - это комплекс, созданный несколькими государствами. В той или иной степени пятнадцать стран занимаются его разработкой. Впервые речь о создании подобного проекта зашла в далеком 1984 году, когда американское правительство совместно с несколькими другими государствами (Канадой, Японией) решили создать супермощную орбитальную станцию. После начала разработок, когда подготавливался комплекс под названием «Фридом», стало понятно, что траты на космическую программу слишком велики для государственного бюджета. Поэтому американцы решили искать поддержки у других стран.

В первую очередь они, конечно, обратились к стране, которая уже имела опыт покорения космического пространства - к СССР, где были аналогичные проблемы: нехватка финансирования, слишком дорогая реализация проектов. Поэтому сотрудничество нескольких государств оказалось вполне разумным решением.

Соглашение и запуск

В 1992 году между США и Россией было подписано соглашение о совместном освоении космического пространства. Начиная с этого времени, страны организовывают совместные экспедиции и обмениваются опытом. Шесть лет спустя первый элемент МКС был отправлен в космос. На сегодняшний день он состоит из множества модулей, к которым планируется постепенно подсоединить еще несколько.

Модули МКС

В состав МКС входят три исследовательских модуля. Это американская лаборатория «Дестини», которая была создана в 2001 году, центр «Коламбус», основанный европейскими исследователями в 2008 году, и «Кибо» - японский модуль, доставленный на орбиту в том же году. Японский исследовательский модуль был установлен на МКС последним. Его по частям отправляли на орбиту, где он и монтировался.

У России нет своего полноценного исследовательского модуля. Но есть аналогичные устройства - «Поиск» и «Рассвет». Это малые исследовательские модули, которые по своим функциям немного менее развиты в сравнении с устройствами других стран, но не особо им уступают. Кроме того, сейчас в России разрабатывается многофункциональная станция под названием «Наука». Планируется, что она будет запущена в 2017 году.

"Салют"

Орбитальная станция «Салют» - долговременный проект СССР. Всего таких станций было несколько штук, все они были пилотируемыми и предназначались для осуществления гражданской программы ДОС. Эта первая российская орбитальная станция была запущена на околоземную орбиту в 1975 году при помощи ракеты «Протон».

В 1960 годах были созданы первые разработки орбитальной станции. К этому времени уже существовала ракета «Протон» для транспортировки. Поскольку создание столь сложного устройства было в новинку ученым умам СССР, работа шла крайне медленно. В процессе возникал ряд проблем. Поэтому было решено воспользоваться разработками, созданными для «Союза». Все «Салюты» были очень похожи по своей конструкции. Главным и самым большим отсеком был рабочий.

"Тяньгун-1"

Китайская орбитальная станция была запущена совсем недавно - в 2011 году. Пока что она не разработана до конца, ее строительство будет продолжаться до 2020 года. В результате планируется соорудить очень мощную станцию. В переводе слово "тяньгун" означает «небесный чертог». Вес устройства равен приблизительно 8500 кг. На сегодняшний день станция состоит из двух отсеков.

Поскольку китайская космическая промышленность планирует в ближайшее время запускать станции следующего поколения, задачи "Тяньгун-1" крайне просты. Главные цели программы состоят в том, чтобы отработать стыковку с кораблями типа «Шэньчжоу», которые сейчас доставляют груз на станцию, отладить существующие модули и устройства, при необходимости модифицировать их, а также создать нормальные условия для длительного пребывания космонавтов на орбите. Следующие станции китайского производства уже будут обладать более широким спектром целей и возможностей.

«Скайлэб»

Единственная американская орбитальная станция была запущена на орбиту в 1973 году. Она была нацелена на проведение исследований, касающихся самых разных аспектов. "Скайлэб" проводила технологические, астрофизические и биологические исследования. На этой станции было три длительных экспедиции, она просуществовала до 1979 года, после чего разрушилась.

У "Скайлэб" и "Тяньгун" были схожие задачи. Поскольку тогда только начиналось экипаж "Скайлэб" должен был исследовать, как проходит процесс адаптации человека в космосе, и проводить некоторые научные эксперименты.

Первая экспедиция "Скайлэб" продлилась всего 28 дней. Первые космонавты отремонтировали некоторые испорченные детали и практически не успели провести исследования. Во время второй экспедиции, которая продлилась уже 59 дней, был установлен теплоизолирующий экран и произведена замена гидроскопов. Третья экспедиция на борту "Скайлэб" продлилась 84 дня, был проведен ряд исследований.

После завершения трех экспедиций предлагалось несколько вариантов того, как можно в дальнейшем поступить со станцией, но из-за невозможности ее транспортировки на более дальнюю орбиту было решено разрушить "Скайлэб". Что и произошло в 1979 году. Некоторые обломки станции удалось сохранить, сейчас они выставляются в музеях.

Genesis

Кроме вышеуказанных, на данный момент на орбите находятся еще две станции без экипажа - надувные Genesis I и Genesis II, которые были созданы частной компанией, занятой космическим туризмом. Они были запущены в 2006 и 2007 годах соответственно. Данные станции не нацелены на исследование космического пространства. Главная их отличительная способность - это то, что, оказавшись на орбите в сложенном виде, они, раскладываясь, начинают значительно увеличиваться в размерах.

Вторая модель модуля лучше оснащена необходимыми датчиками, а также 22 камерами видеонаблюдения. По проекту, организованному компанией, которая создала корабль, любой человек мог отправить на втором модуле небольшой предмет за 295 американских долларов. Также на борту Genesis II есть автомат для игры в бинго.

Итоги

Многие мальчики в детстве хотели стать космонавтами, хотя мало кто из них понимал, насколько это сложная и опасная профессия. В СССР космическая промышленность вызывала гордость у каждого патриота. Достижения советских ученых в этой области невероятны. Они очень важны и примечательны, поскольку эти исследователи были первопроходцами в своей области, им приходилось создавать самостоятельно все. станции были прорывом. Они открыли новую эру покорения Вселенной. Множеству космонавтов, которые были отправлены на околоземную орбиту, удалось достичь неимоверных высот и поспособствовать освоению космоса, открыв его секреты.

Настоящее изобретение предназначено для использования в космической технике при разработке космических аппаратов.

Известна многоцелевая космическая платформа для создания космических аппаратов (RU 2376212). Платформа содержит каркас, выполненный в форме параллелепипеда, с установленными на нем боковыми, верхней и нижней панелями, шарнирно закрепленными на каркасе солнечными батареями. Внутрикаркасное пространство разделено промежуточной панелью, размещенной между нижней и верхней панелями и закрепленной на каркасе, соответственно на отсек служебных систем и отсек полезной нагрузки.

Недостатком данного технического решения является отсутствие возможности разместить на боковых стенках (панелях) корпуса некоторые виды целевой аппаратуры космических аппаратов (антенны), отличающихся значительными габаритами, т.к. боковые стенки платформы заняты каркасами солнечных батарей, и размещение на боковых стенках других элементов полезной нагрузки может препятствовать раскрытию солнечных батарей. Кроме того, отсутствие привода поворота солнечных батарей требует постоянного изменения ориентации КА для того, чтобы обеспечить постоянную ориентацию солнечных батарей на солнце. Данное свойство ограничивает возможности применения платформы, в частности нецелесообразно использовать данную космическую платформу для космических аппаратов на геостационарной орбите.

В качестве ближайшего аналога (прототипа) выбрана известная многоцелевая космическая платформа для создания космических аппаратов (RU 2375267). Платформа содержит модуль служебной аппаратуры в форме прямоугольного параллелепипеда, образованного торцевой платой и четырьмя боковыми платами. Внутри установлены две промежуточные палаты, делящие модуль на три отсека для служебной аппаратуры. На боковой плате смонтированы приборы системы ориентации и стабилизации и антенны. На одной из плат смонтированы узлы стыковки с системой отделения. Двигательная установка смонтирована в районе предполагаемого центра масс. Панели солнечных батарей смонтированы на выступающих за пределы модуля кронштейнах. Узлы установки модуля полезной нагрузки (МПН) расположены на свободных торцах боковых плат модуля и выступающих кронштейнах. Причем приборы целевой аппаратуры полезной нагрузки располагаются в пространстве между солнечными батареями и свободной зоной модуля со стороны открытой его части.

Ряд существенных недостатков, характерных для прототипа, заключается в следующем:

1. Зона, занимаемая МПН, ограничена свободным пространством между солнечными батареями и свободной зоной модуля со стороны открытой его части, что накладывает ограничения на размеры МПН. При такой компоновке не используется коническая часть головного обтекателя (ГО) ракеты-носителя;

2. Наличие разделения функций конструкции на силовую и тепловую, т.е. использование в прочностной схеме в основном внутренних силовых элементов для обеспечения жесткости, прочности, геометрической стабильности и термоупругости.

Задачей, на решение которой направлено заявляемое изобретение, является улучшение технических и эксплуатационных характеристик, а также сокращение сроков и стоимости создания на ее основе космических аппаратов (КА) с различной целевой аппаратурой.

Задача решается тем, что космическая платформа, содержащая модуль служебных систем (МСС) в форме прямоугольного параллелепипеда, узлы стыковки с системой отделения, двигательную установку, солнечные батареи, имеет пространственную конструкцию, причем конструктивно-силовую основу космической платформы составляет цилиндрический отсек (силовая конструкция корпуса), выполненный в виде сетчатой конструкции из высокомодульного углепластика, с закрепленными на нем сотовыми панелями, соединенными между собой кронштейнами, внутри цилиндрического отсека устанавливаются баки хранения рабочего тела для двигательной установки (ДУ) системы коррекции (СК) и баки хранения рабочего тела для ДУ системы ориентации и стабилизации (СОС), внутренний объем корпуса МСС, верхняя панель и вертикальная панель отводятся под размещение приборов подсистем, в состав многоцелевой космической платформы входят складываемые панели солнечных батарей (СБ), для ориентации нормали активной поверхности панелей СБ на солнце предназначен привод батареи солнечной, двигательная установка системы коррекции (СК) на основе стационарных плазменных двигателей на ксеноне, размещенных на титановых кронштейнах, векторами тяг блоков коррекции проходящих через фактический центр масс КА, для обеспечения прохождения векторов тяг через фактический центр масс блоки коррекции установлены на титановые кронштейны с возможностью перемещения в одной плоскости и вращения относительно оси, в качестве исполнительного органа для создания управляющих моментов относительно осей связанной с КА системы координат используется двигательная установка системы ориентации и стабилизации, двигательные блоки ориентации располагаются на панелях-радиаторах, в зоне стыка с верхней панелью и в центре силовой конструкции корпуса (СКК) со стороны стыковки с ракетой-носителем, на расстоянии от центра масс КА на базе заявляемой платформы, обеспечивающем максимальные плечи управляющих моментов, установка космических аппаратов на базе данной космической платформы на ракету-носитель при реализации групповых и попутных запусков осуществляется при помощи устройства отделения, установленного по нижнему шпангоуту СКК, для обеспечения температурного режима оборудования в составе платформы существует система терморегулирования, основными базовыми решениями являются применение полностью резервированного жидкостного контура СТР и средств пассивного регулирования.

Космическая платформа представляет собой конструктивно и функционально обособленный модуль, объединяющий все бортовые служебные подсистемы, которые должны обеспечивать работу полезной нагрузки и предоставлять для нее все необходимые ресурсы и услуги.

В процессе создания КА космическая платформа объединяется с полезной нагрузкой, которая также представляет собой конструктивно и функционально обособленный модуль.

Для обеспечения простой интеграции с различными полезными нагрузками, соответствующими различным спутникам, космическая платформа имеет простые и четко определенные унифицированные интерфейсы, включая:

Механический интерфейс;

Электрический интерфейс;

Тепловой интерфейс;

Информационный интерфейс.

Построение и характеристики интерфейсов универсальные и обеспечивают возможность интеграции с платформой полезных нагрузок различных спутников, которые соответствуют диапазону интерфейсных требований платформы.

Все интерфейсы пространственно расположены в зонах стыковки конструкций платформы и полезной нагрузки и к ним обеспечивается легкий доступ на всех этапах наземной эксплуатации.

Космическая платформа также обеспечивает установку созданного на ее базе спутника, на средства выведения для осуществления запуска. Для этой цели она имеет унифицированный интерфейс, согласованный для всех применимых средств выведения.

Интерфейс со средствами выведения используется также для стыковки с наземным транспортировочным и технологическим оборудованием в процессе работ по сборке, интеграции и испытаниям платформы и спутника в целом, а также транспортировке и подготовке на полигоне запуска.

Космическая платформа имеет в своем составе бортовые системы, способные как минимум обеспечить выполнение следующих функций в обеспечении функционирования КА на участке выведения на орбиту, дрейфа и установки в заданную точку геостационарной орбиты (ГСО), выполнения целевых задач в течение срока эксплуатации:

Общее управление работой всех подсистем и оборудования и взаимодействие с наземным комплексом управления;

Перевод платформы из стартовой конфигурации в рабочую;

Ориентация и стабилизация корпуса КА с требуемыми точностями;

Удержание КА в заданной точке ГСО с требуемыми точностями;

Формирование управляющих сил и моментов в процессе ориентации, стабилизации КА и управления его движением;

Электропитание всех подсистем платформы и МПН во всех режимах эксплуатации;

Поддержание температурных режимов всех элементов платформы и МПН в заданных пределах;

Поддержание всех элементов КА в требуемом взаимном положении на всех этапах эксплуатации и защита от внешних воздействий;

Обеспечение проведения наземной отработки и испытаний КА и его бортовых систем, взаимодействия с наземным испытательным оборудованием.

Заявляемая космическая платформа поясняется чертежами, на которых изображено:

На фиг.1 изображен вид общий (рабочее состояние КП в аксонометрической проекции);

На фиг.2 изображен вид общий (стартовое состояние КП в аксонометрической проекции);

На фиг.3 - конструктивное деление платформы;

На фиг.4 - размещение баков хранения рабочего тела для двигательных установок.

Конструктивно-силовой основой платформы является негерметичный приборный отсек, который состоит из силовой конструкции корпуса 1, выполненный в виде сетчатой конструкции из высокомодульного углепластика и закрепленного на ней приборного блока 2, выполненного из трехслойных сотопанелей, соединенных между собой кронштейнами. Приборный блок 2 негерметичного исполнения служит для размещения аппаратуры модуля служебных систем, выполнен в виде прямоугольного параллелепипеда из плоских панелей 3, 4, 5, 6, 7, 8, 9. Приборный блок 2 закреплен на торце изогридной трубы 1. Панель 3 наружной поверхностью обращена к панелям солнечных батарей 10, имеет прямоугольную форму с круглым отверстием по центру, в котором размещена изогридная труба 1. На панели 1 находится часть приборов 11, электрические интерфейсы и гидравлические интерфейсы 12 для стыковки с модулем полезной нагрузки. Вдоль СКК 1 располагается вертикальная панель 9, на которой расположено оборудование 11.

Внутренний объем корпуса МСС, верхняя панель 3, панель вертикальная 9 отводится под размещение приборов подсистем 11, аккумуляторных батарей 13, элементов 14 системы терморегулирования. Так же часть элементов 14 СТР крепится на СКК 1.

Внутри цилиндрического отсека СКК устанавливаются баки хранения рабочего тела 15 для двигательной установки системы коррекции и баки хранения рабочего тела 16 для ДУ системы ориентации и стабилизации. Количество баков может изменяться в зависимости от миссии космического аппарата построенного на базе данной платформы.

В состав многоцелевой космической платформы входят складываемые панели солнечных батарей 10. Для ориентации нормали активной поверхности панелей СБ на Солнце предназначен привод батареи солнечной 17.

В состав многоцелевой космической платформы входит двигательная установка 18 системы коррекции на основе стационарных плазменных двигателей на ксеноне, размещенных на титановых кронштейнах, векторами тяг блоков коррекции проходящих через фактический центр масс КА. Для обеспечения прохождения векторов тяг через фактический центр масс блоки коррекции установлены на титановые кронштейны с возможностью перемещения в одной плоскости и вращения относительно оси.

В качестве исполнительного органа для создания управляющих моментов относительно осей связанной с КА системы координат используется двигательная установка 19 системы ориентации и стабилизации. Двигательные блоки ориентации располагаются на панелях-радиаторах, в зоне стыка с верхней панелью и в центре СКК со стороны стыковки с ракетой-носителем, на расстоянии от центра масс КА на базе заявляемой платформы, обеспечивающем максимальные плечи управляющих моментов.

Установка космических аппаратов на базе данной космической платформы на ракету-носитель при реализации групповых и попутных запусков осуществляется при помощи устройства отделения 20, установленного по нижнему шпангоуту СКК.

Для обеспечения температурного режима оборудования в составе платформы существует система терморегулирования. Основными базовыми решениями, положенными в основу создания СТР платформы и КА на базе платформы, являются применение комбинированной подсистемы на основе тепловых труб и полностью резервированного жидкостного контура (ЖК), дополненной управляемыми электрообогревателями и средствами пассивного регулирования.

Принятая концепция базируется на следующих принципах:

1) В качестве основных автономных радиаторов 7 СТР используется наружная поверхность сотовых приборных панелей платформы, расположенных по осям «±Z» 5 и покрытых терморегулирующим покрытием ОСО-С для обеспечения отвода тепловой мощности от платформы в течение заданного срока эксплуатации. Автономные радиаторы 7 СТР используются для терморегулирования АБ;

2) ЖК состоит из двух независимых контуров (гидравлически не связаны друг с другом): основного и резервного и предназначен для отвода теплового потока от оборудования, размещенного на платформе, на радиаторы «±Z» ПН, также ЖК может осуществлять перенос избыточного теплового потока между панелями-радиаторами МСС и полезной нагрузки, которая будет стыковаться с данной платформой.

Площадь радиационных панелей космической платформы определяется исходя из необходимого теплоотвода от оборудования платформы.

Для снижения нерегулируемого теплообмена с внешней средой конструкция и оборудование КА закрыты теплоизоляцией.

С целью удовлетворения требований по полям зрения оптических приборов СОС, минимизации конструктивной погрешности увязки осей этих приборов и осей диаграмм направленности антенн МПН, а также конструктивного упрощения КА оптические приборы СОС, кабели, соединяющие это оборудование с другим оборудованием платформы, монтируются на модуле полезной нагрузки.

Заявляемая космическая платформа по сравнению с прототипом позволяет следующее:

1. Повысить плотность компоновки создаваемых на основе платформы КА за счет более полного использования зоны полезного груза (ЗПГ) ракеты-носителя. Вся аппаратура платформы скомпонована в нижней части ЗПГ, весь остальной объем (в том числе конусная часть ЗПГ) остается под компоновку МПН.

2. Сократить сроки изготовления КА за счет использования рекуррентной космической платформы с простыми и четко определенными унифицированными интерфейсами и различных МПН.

3. Сократить стоимость изготовления КА на базе данной космической платформы, т.к. не нет необходимости затрачивать средства на ее доработку и деквалификацию.

1. Космическая платформа, содержащая модуль служебных систем (МСС) в форме прямоугольного параллелепипеда, узлы стыковки с системой отделения, двигательную установку, солнечные батареи, отличающаяся тем, что космическая платформа представляет собой пространственную конструкцию, причем конструктивно-силовую основу космической платформы составляет цилиндрический отсек (силовая конструкция корпуса), выполненный в виде сетчатой конструкции из высокомодульного углепластика, с закрепленными на нем сотовыми панелями, соединенными между собой кронштейнами, внутри цилиндрического отсека устанавливаются баки хранения рабочего тела для двигательной установки (ДУ) системы коррекции (СК) и баки хранения рабочего тела для ДУ системы ориентации и стабилизации (СОС), внутренний объем корпуса МСС, верхняя панель и вертикальная панель отводятся под размещение приборов подсистем, в состав многоцелевой космической платформы входят складываемые панели солнечных батарей (СБ), для ориентации нормали активной поверхности панелей СБ на солнце предназначен привод батареи солнечной, двигательная установка системы коррекции (СК) на основе стационарных плазменных двигателей на ксеноне, размещенных на титановых кронштейнах, векторами тяг блоков коррекции проходящих через фактический центр масс космического аппарата (КА), для обеспечения прохождения векторов тяг через фактический центр масс блоки коррекции установлены на титановые кронштейны с возможностью перемещения в одной плоскости и вращения относительно оси, в качестве исполнительного органа для создания управляющих моментов относительно осей связанной с КА системы координат используется двигательная установка СОС, двигательные блоки ориентации располагаются на панелях-радиаторах, в зоне стыка с верхней панелью и в центре силовой конструкции корпуса (СКК) со стороны стыковки с ракетой-носителем, на расстоянии от центра масс КА на базе заявляемой платформы, обеспечивающем максимальные плечи управляющих моментов, установка космических аппаратов на базе данной космической платформы на ракету-носитель при реализации групповых и попутных запусков осуществляется при помощи устройства отделения, установленного по нижнему шпангоуту СКК, для обеспечения температурного режима оборудования в составе платформы существует система терморегулирования, основными базовыми решениями являются применение полностью резервированного жидкостного контура СТР и средств пассивного регулирования.

2. Космическая платформа по п.1, отличающаяся тем, что количество баков может изменяться в зависимости от миссии космического аппарата, построенного на базе данной платформы.

3. Космическая платформа по п.1, отличающаяся тем, что количество вертикальных панелей может быть больше одной, если необходимо более полно использовать компоновочное пространство.

4. Космическая платформа по п.1, отличающаяся тем, что часть двигательной установки системы коррекции устанавливается на модуле полезной нагрузки.

Похожие патенты:

Изобретение относится к орбитальному движению искусственных спутников Земли (ИСЗ), совершающих групповой полет. Поддержание расстояния между ИСЗ по фронту производится путем периодического включения на ближней границе разрешенного коридора движения реактивной двигательной установки (ДУ) активного ИСЗ.

Изобретение относится к области ракетной техники и касается изготовления силовой оболочки корпуса возвращаемого летательного аппарата. Ленточный препрег для изготовления теплозащитного покрытия силовой оболочки корпуса содержит скрепленные между собой куски растяжимой в тангенциальном направлении и пропитанной фенольным связующим ленты.

Изобретение относится к космической технике и может быть использовано для доставки полезной нагрузки в космическое пространство. Комплекс содержит отсек силовой установки с несущей конструкцией с проемами, переходником, электрическим двигателем, источником электрического питания с солнечными элементами и ядерным источником энергии, бортовую систему в виде дополнительной жидкостной и твердотопливной системы обеспечения движения в космосе, образующую искусственный спутник Земли.

Изобретение относится к космической технике и может быть использовано для удаления нефункционирующего космического аппарата (КА) с геостационарной орбиты. Выводят на геостационарную орбиту КА со средством наблюдения и захвата нефункционирующего КА и дополнительным запасом компонентов топлива, переводят КА после окончания срока активного существования в точку стояния на геостационарной орбите нефункционирующего КА, осуществляют ориентацию относительно нефункционирующего КА, наводят на нефункционирующий КА, захватывают нефункционирующий КА, включают двигатель КА, переводят связку космических аппаратов на орбиту захоронения.

Изобретение относится к космической связи и может быть использовано при проектировании космических систем оперативной связи различного назначения. Технический результат состоит в повышении оперативности, помехоустойчивости и технологичности связи, Для этого глобальная низкоорбитальная космическая информационная система состоит из космического и наземного сегментов, включает в себя КА-абоненты и через телекоммуникационное и информационное пространство связана с потребителями на суше, на воде и в воздухе пользовательского сегмента. Космический сегмент состоит из N информационных узлов, состоящих из основного и связанных космических аппаратов в виде кольцевых кластеров, объединенных локальной сетью, при этом космические информационные узлы расположены в смещенных орбитальных плоскостях, а наземный сегмент состоит из сети связанных между собой непосредственно или через телекоммуникационное и информационное пространство конкретной страны с наземными информационными узлами, каждый из которых связан с космическими информационными узлами, которые также связаны со всеми связанными космическими аппаратами-абонентами кластеров. 2 н.п. ф-лы, 3 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения лёгкого класса (РКН ЛК). РКН ЛК на нетоксичных компонентах топлива с высокой степенью заводской готовности к пусковым операциям с определенным составом, весогабаритными и техническими параметрами, необходимыми для осуществления авиационной транспортировки полностью собранной и испытанной в заводских условиях РКН ЛК, содержит спасаемые ракетный блок или двигательную установку первой ступени, воздушно-космическую парашютную систему. Изобретение позволяет сократить время предстартовой подготовки РКН ЛК к пуску. 5 ил.

Изобретение относится к космической технике и может быть применено для реализации программ сведения с геостационарной орбиты (ГСО) вышедших из строя космических аппаратов (КА). Многомодульный космический аппарат (МКА) для очистки геостационарной орбиты от антропогенных объектов содержит двигательную установку с запасами топлива, энергоустановку и систему управления с комплексом средств наблюдения и определения параметров движения сводимого с орбиты космического аппарата (СКА). На борту МКА размещено не менее одного модуля автономного маневрирования с двигательной установкой, системой управления, головкой самонаведения, полезной нагрузкой, с возможностью отделения модуля в заданный момент времени. Способ очистки геостационарной орбиты от антропогенных объектов включает запуск МКА на дежурную орбиту, близкую по высоте к ГСО нахождения СКА, во встречном направлении по отношению к направлению движения СКА. Техническим результатом изобретения является снижение затрат ресурсов (топлива, ракет-носителей) на решение задачи очистки геостационарной орбиты от антропогенных объектов. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике и может быть использовано при компоновке полезной нагрузки (ПН) в космических аппаратах (КА). Устройство компоновки ПН содержит КА и выполнено в виде разделяемой силовой трубы изогридной сетчатой структуры с функцией силовой конструкции корпуса КА, и состоит из частей в зависимости от высоты и количества КА в ПН, с постоянной площадью поперечного сечения в пределах одной части и увеличивающейся площадью поперечного сечения к адаптеру ракеты-носителя (РН). Собирают космические аппараты вокруг соответствующих частей разделяемой силовой трубы на заводе-изготовителе, интегрируют КА в единую ПН, собирают космическую головную часть (КГЧ) в составе интегрированной ПН и головного обтекателя (ГО), устанавливают КГЧ на штатное место на РН. Изобретение позволяет повысить эффективность использования объёма под ГО РН. 2 н. и 3 з.п. ф-лы, 2 ил.

Заявленное изобретение относится к способам питания космического аппарата. Для электропитания космического аппарата обеспечивают совместную работу солнечной батареи и литий-ионной аккумуляторной батареи на бортовую нагрузку, заряжают аккумуляторную батарею от солнечной батареи, измеряют и контролируют основные параметры бортовым комплексом управления с бортовой электронной вычислительной машиной, производят поэлементный контроль напряжений аккумуляторов в аккумуляторной батарее и наличие тока ее разряда. При появлении тока разряда блокируют проведение балансировки аккумуляторов, а при исчезновении - продолжают. Обеспечивается повышение эффективности использования литий-ионных аккумуляторных батарей в составе системы электропитания низколетящего космического аппарата. 1 ил.

Изобретение относится к ракетной технике и может быть использовано при полете ракет. Подают распыленное рабочее тело через форсунки и нагреватель в теплообменную камеру без доступа кислорода под действием поршня и сил инерции, придают основной импульс ракете от разогретого рабочего тела, выходящего из сопла, придают дополнительный импульс ракете за счет воспламенения и сгорания поступившего из сопла рабочего тела в обойме, установленной на стабилизаторах ракеты. Изобретение позволяет увеличить скорость и дальность полета ракеты. 1 ил.

Изобретение относится к транспортным средствам и может быть использовано в летательных аппаратах (ЛА). ЛА содержит корпус, два реактивных двигателя внутри корпуса блока управления, прямоугольную камеру с амортизатором, два тугоплавких пружинных клапана с теплоизоляционными прокладками и повернутыми закруглениями, блок управления выдачей топлива с увеличенными интервалами. Изобретение позволяет повысить ускорение и надежность ЛА. 1 ил.

Изобретение относится к системам электроснабжения космических аппаратов (КА) с солнечными батареями (СБ). В способе управления ориентацией СБ определяют углы разгона и торможения СБ и максимальные значения тока, вырабатываемого СБ при работе бортового оборудования в режимах минимального и максимального потребления тока. Задают углы срабатывания и отпускания СБ, диапазон времени определения положения СБ на освещенном участке орбиты и максимально допустимый угол анализа токов. Задают максимально допустимые ошибку определения углового положения СБ и период измерения токов. Устанавливают начальное значение максимального фонового тока и вычисляют точность определения положения СБ. Техническим результатом изобретения является расширение функциональных возможностей и повышение эффективности способа управления положением СБ. 4 ил.

Изобретение относится к космической технике и может быть использовано в искусственных спутниках Земли (ИСЗ). ИСЗ содержит силовой корпус в виде кольца с удлинением и передней частью в виде воронки, с кольцевым механическим демпфером с картечью или дробью, с элеронами, аэродинамический кольцевой стабилизатор (КС) в виде пленочного с металлизированной наружной поверхностью рукава с удлинением, гаргротами и кольцевыми ребрами жесткости, с перфорированной диафрагмой, стропы, тросы, дополнительные КС с диафрагмами, реактивную двигательную установку с многосопловыми блоками и рабочим телом в виде холодного газа. 14 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике. Космическая платформа содержит модуль служебных систем в форме прямоугольного параллелепипеда, узлы стыковки с системой отделения, двигательную установку, солнечные батареи, систему терморегулирования. Космическая платформа включает в себя цилиндрический отсек в виде сетчатой конструкции из углепластика, сотовые панели с кронштейнами. Внутри цилиндрического отсека установлены баки хранения рабочего тела для двигательной установки системы коррекции с плазменными двигателями на ксеноне и двигательной установки системы ориентации и стабилизации. Техническим результатом изобретения является повышение плотности компоновки и сокращение сроков изготовления КА на базе данной платформы. 4 ил.,3 з.п. ф-лы

Изобретение относится к космической технике, а именно к космическим платформам. Космическая платформа содержит несущий корпус, снабженный откидными модулями, связанными с несущим корпусом разъемными шарнирными узлами, поворотными солнечными батареями, установленными на несущем корпусе с помощью электроприводов, приборами служебных систем, размещенными внутри несущего корпуса, элементы крепления полезной нагрузки и узлы соединения несущего корпуса с системой отделения. Откидные модули снабжены механизмами поворота и узлами фиксации откидных модулей к несущему корпусу. Внутри откидных модулей размещены элементы крепления полезной нагрузки. На откидных модулях установлены дополнительные солнечные батареи. Достигается расширение функциональных возможностей и улучшение эксплуатационных характеристик космической платформы. 1 з.п. ф-лы, 6 ил.

Рисунки к патенту РФ 2410294

Изобретение относится к изделиям космической техники, а более конкретно к космическим платформам, и может быть использовано при создании космических аппаратов различного назначения.

Развитие космической техники на современном этапе характеризуется созданием космических аппаратов различного назначения на базе унифицированных космических платформ, что позволяет снизить стоимость разработки и изготовления космических аппаратов и уменьшить сроки их создания.

Космическая платформа представляет собой несущую конструкцию, снабженную служебными системами и оборудованную устройствами для размещения на ней полезной нагрузки различного целевого назначения. Служебными системами являются системы, общие для космических аппаратов различного назначения, а именно: система электроснабжения, система ориентации и стабилизации, бортовой комплекс управления, двигательная установка и т.д. Полезной нагрузкой являются приборы и устройства, обеспечивающие решение целевых задач конкретного космического аппарата, а именно: оптическое, радиолокационное, телекоммуникационное оборудование и т.д. Под несущей способностью космической платформы понимаются масса и объем полезной нагрузки, которая может быть установлена на космическую платформу. На практике несущая способность современных космических платформ достигает сто и более процентов, т.е. масса и объем космической платформы примерно равны массе и объему размещаемой на космической платформе полезной нагрузки.

Известна космическая платформа бескорпусной конструкции, содержащая плоскую (несущую) панель, с одной стороны которой установлены отдельные модули служебных систем, в том числе приборный модуль, модуль системы электроснабжения и модуль двигательной установки, а с другой стороны размещены элементы крепления модуля целевой полезной нагрузки и отдельных приборов целевого назначения (см., например, «Новости космонавтики» № 4, апрель 2007 г., стр.38).

Недостатками данной космической платформы являются:

Сложность закрепления и демпфирования космической платформы и космического аппарата, создаваемого на ее базе, при наземной эксплуатации (перевозка в транспортировочном контейнере, установка на технологические подставки, кантователи, такелажные операции) и в полете в составе ракеты-носителя (увеличенная масса конструкции адаптера - переходного устройства между космической платформой и ракетой-носителем), связанная с необходимостью размещения опорных и такелажных элементов исключительно на плоской (несущей) панели, с обеих сторон которой установлены отдельные модули;

Затрудненный доступ обслуживающего персонала к модулям служебных систем при наземной подготовке, обусловленный установкой космической платформы плоской (несущей) панелью на опорные стойки агрегатов наземного оборудования.

Известна также космическая платформа, содержащая несущий корпус, выполненный в форме параллелепипеда, с установленными на нем солнечными батареями, приборами служебных систем, размещенными внутри несущего корпуса, штангой гравитационного устройства, размещенной вне несущего корпуса, элементы крепления полезной нагрузки, узлы соединения несущего корпуса с системой отделения (см., например, «Новости космонавтики» № 7, июль 2005 г., стр.48). Размещение полезной нагрузки предусмотрено снаружи несущего корпуса на его гранях.

При этом недостатками данной космической платформы являются:

Затрудненный доступ к приборам служебных систем, установленных внутри несущего корпуса космической платформы, при необходимости проведения их обслуживания, ремонта или замены, что объясняется установкой снаружи несущего корпуса на его гранях приборов и устройств полезной нагрузки и высокой трудоемкостью их демонтажа и повторной установки;

Возможность механических повреждений полезной нагрузки при наземной подготовке космической платформы на космодроме, что также объясняется установкой снаружи несущего корпуса на его гранях отдельных (незащищенных) приборов и устройств полезной нагрузки;

Взаимовлияние электромагнитных полей, создаваемых приборами служебных систем и приборами полезной нагрузки из-за их плотной компоновки на несущем корпусе, приводящее к нештатному функционированию бортовых систем, искажению полученных результатов функционирования полезной нагрузки, сокращению срока службы отдельных приборов.

Кроме того, однозначный приборный состав служебных систем космической платформы, определяющий технические характеристики служебных систем (мощность системы электроснабжения, точностные параметры системы ориентации и стабилизации, наличие двигательной установки, быстродействие бортового комплекса управления, объем передаваемой информации), а также предельные массогабаритные характеристики космической платформы существенно ограничивают ее возможности в плане модернизации или новой разработки космических аппаратов, создаваемых на базе данной космической платформы.

На практике это означает, например, что силовая конструкция космической платформы позволяет установить внутри несущего корпуса требуемую совокупность приборов служебных систем большей массы, в то время как внутренний объем несущего корпуса не позволяет разместить в нем данные приборы. В результате чего приходится вновь разрабатывать космическую платформу с увеличенными массогабаритными характеристиками.

Задачей (целью) предлагаемого изобретения является расширение функциональных возможностей (создание на базе космической платформы космических аппаратов широкого диапазона массогабаритных характеристик, увеличение срока функционирования космической платформы на орбите) и улучшение эксплуатационных характеристик (повышение ремонтоспособности, снижение вероятности механических повреждений, уменьшение взаимовлияния электромагнитных полей приборов) космической платформы.

Поставленная цель в предлагаемом устройстве достигается тем, что несущий корпус снабжается откидными модулями, шарнирно связанными с ним и имеющими механизмы их поворота, при этом откидные модули выполняются в виде рам, а шарниры крепления откидных модулей к несущему корпусу выполняются разъемными. Элементы крепления полезной нагрузки устанавливаются внутри рам на их ребрах. На рамах откидных модулей устанавливаются дополнительные панели солнечных батарей и элементы крепления резервных приборов служебных систем. Механизмы поворота откидных модулей снабжаются электрическими приводами. Несущий корпус связывается с откидными модулями посредством гибких теплопроводов.

Предлагаемое устройство поясняется на фиг.1-6.

На фиг.1 показан общий вид космической платформы в нерабочем (транспортном) положении.

На фиг.2 представлен общий вид космической платформы в рабочем (орбитальном) положении.

На фиг.3 изображен вид А согласно фиг.1.

На фиг.4 показан вид Б согласно фиг.2.

На фиг.5 представлена объемная модель космической платформы в рабочем (орбитальном) положении.

На фиг.6 изображен выносной элемент I согласно фиг.4.

Предлагаемое устройство (космическая платформа) содержит несущий корпус 1 (фиг.2), выполненный в форме параллелепипеда, с установленными на нем солнечными батареями 2, приборами служебных систем 3 (фиг.3), размещенными внутри несущего корпуса 1, элементы крепления 4 (фиг.2) полезной нагрузки 5, узлы соединения 6 (фиг.1) несущего корпуса 1 с системой отделения (условно не показана). На несущем корпусе 1 посредством шарниров 7 (фиг.3, 6) установлены откидные модули 8. Шарниры 7 выполнены разъемными. Откидные модули 8 снабжены механизмами поворота 9 (фиг.4, 6) и выполнены в виде рам 10 (фиг.5). Элементы крепления 4 полезной нагрузки 5 установлены внутри рам 10 на их ребрах 11 (фиг.5). На рамах 10 откидных модулей 8 установлены дополнительные солнечные батареи 12 (фиг.2, 3) и элементы крепления 13 (фиг.2) резервных приборов служебных систем 14. Механизмы поворота 9 откидных модулей 8 имеют электрический привод. Несущий корпус 1 и откидные модули 8 связаны между собой посредством гибких теплопроводов 15 (фиг.4, 6).

Сборка космической платформы на заводе-изготовителе проводится при вертикальном положении несущего корпуса 1.

Внутри несущего корпуса 1 устанавливаются приборы служебных систем 3. С внешней стороны несущего корпуса 1 монтируются солнечные батареи 2 и узлы соединения 6 несущего корпуса 1 с системой отделения (условно не показана).

Установка на несущий корпус 1 откидных модулей 8 проводится (в зависимости от габаритных размеров космической платформы и транспортных ограничений) на заводе-изготовителе либо на техническом комплексе.

Откидные модули 8 крепятся на несущем корпусе 1 с помощью разъемных шарниров 7 и фиксируются к несущему корпусу 1 в нерабочем (транспортном) положении посредством, например, пирозамков 16 (фиг.1).

Элементы крепления 4 полезной нагрузки 5 устанавливаются внутри рам 10 на их ребрах 11. На рамах 10 откидных модулей 8 устанавливаются дополнительные солнечные батареи 12 и элементы крепления 13 резервных приборов служебных систем 14. Механизмы поворота 9 откидных модулей 8 снабжаются электрическим приводом. Несущий корпус 1 связывается с откидными модулями 8 посредством гибких теплопроводов 15.

После выведения на орбиту функционирования космического аппарата, созданного на базе предлагаемой космической платформы, производится ориентация космической платформы в пространстве и перевод откидных модулей 8 в рабочее (орбитальное) положение (фиг.4).

Ориентация обеспечивается, например, путем выдвижения штанги гравитационного устройства 17 (фиг.2, 5).

Перевод откидных модулей 8 в рабочее (орбитальное) положение проводится в следующей последовательности:

При срабатывании пирозамков 16 нарушается удерживающая связь между откидными модулями 8 и несущим корпусом 1;

С помощью механизмов поворота 9, имеющих электропривод, откидные модули 8 на шарнирах 7 поворачиваются в требуемое положение.

Следует отметить, что электрическая связь между несущим корпусом 1 и откидными модулями 8 обеспечивается за счет применения гибких электрических кабелей (условно не показаны), длина которых позволяет исключить натяжение и возможный обрыв данных кабелей при переводе откидных модулей 8 из нерабочего (транспортного) положения в рабочее (орбитальное) положение.

Затем проводится подготовка полезной нагрузки 5, установленной внутри откидных модулей 8 на рамах 10, к штатному функционированию.

Для компенсации возможных дополнительных возмущений от сил аэродинамического и светового воздействия используется установленный на несущем корпусе 1 маховик (условно не показан), кинетический момент которого перпендикулярен к продольной оси штанги гравитационного устройства 17. Данный маховик совместно со штангой гравитационного устройства 17 обеспечивает требуемую орбитальную ориентацию космической платформы.

При наличии вспышек на Солнце, либо недопустимом тепловом воздействии все или отдельные откидные модули 8 при помощи электроприводов механизмов поворота 9 переводятся в нерабочее положение (фиг.3). При прекращении действия данных факторов откидные модули 8 вновь переводятся в рабочее положение.

Тепловой режим откидных модулей 8 регулируется посредством гибких теплопроводов 15, связывающих их с несущим корпусом 1 и обеспечивающих сброс избытка тепловой энергии с откидных модулей 8 на несущий корпус 1 либо перекачку тепловой энергии с несущего корпуса 1 на откидные модули 8 при «замерзании» последних. Таким образом, система «откидные модули 8 - несущий корпус 1», имеющая связующие элементы в виде гибких теплопроводов 15, является, фактически, тепловым регулятором, работающим при любых (угловых) положениях откидных модулей 8 относительно несущего корпуса 1 и способствующим стабилизации действующих температур в заданном рабочем диапазоне.

Следует отметить, что перевод откидных модулей 8 в рабочее положение путем их разворота относительно несущего корпуса 1 увеличивает габаритные размеры космической платформы в поперечном направлении, что приводит к возрастанию собственного момента инерции космической платформы относительно ее продольной оси. Это повышает устойчивость космической платформы при ее нахождении на орбите в условиях воздействия на космическую платформу гравитационного поля Земли.

При необходимости проведения коррекции орбиты с целью уменьшения потребного управляющего воздействия возможен перевод откидных модулей 8 (всех или отдельных) в нерабочее положение. Снабжение механизмов поворота 9 откидных модулей 8 электроприводами позволяет обеспечивать перемещение (разворот) каждого откидного модуля 8 как в прямом, так и в противоположном направлениях.

Разворот откидных модулей 8 относительно несущего корпуса 1 и установка их в рабочее положение приводит к увеличению на орбите функционирования инерционных характеристик космического аппарата, создаваемого на базе предлагаемой космической платформы, относительно его осей стабилизации, что, в свою очередь, приведет к уменьшению угловых скоростей вращения космического аппарата.

Периодический разворот (в прямом или противоположном направлениях на заданный угол) откидных модулей 8 позволяет изменять (варьировать) инерционные характеристики и параметры движения космического аппарата на орбите в случае применения системы стабилизации и ориентации космического аппарата с задействованием штанги гравитационного устройства 17.

Размещение приборов полезной нагрузки 5 в откидных модулях 8 позволяет:

Уменьшить трудоемкость установки полезной нагрузки 5 на космическую платформу;

Выполнять, при необходимости, установку полезной нагрузки 5 на космическую платформу в условиях технического комплекса космодрома, а не завода-изготовителя;

Уменьшить габариты космической платформы при транспортировке ее на космодром с завода-изготовителя;

Уменьшить габариты космического аппарата, создаваемого на базе предлагаемой космической платформы (путем его размещения в нерабочем (транспортном); положении в зоне полезного груза подобтекательного пространства ракеты-носителя);

Повысить ремонтоспособность космического аппарата (путем оперативной замены одного (неработоспособного) откидного модуля 8 на другой (работоспособный);

Исключить необходимость демонтажа приборов и устройств полезной нагрузки 5 с целью обеспечения доступа к приборам служебных систем 3, установленных внутри несущего корпуса 1 космической платформы, при необходимости проведения их обслуживания, ремонта или замены.

Кроме того, размещение приборов полезной нагрузки 5 специализированного назначения (например, оптика, радиолокация, радиосредства и т.д.) в различных откидных модулях 8 позволяет обеспечивать поставку полезной нагрузки 5 специализированного назначения на сборочный завод (или на технический комплекс космодрома) непосредственно от изготовителя данной нагрузки с ее размещением (в состоянии поставки) в отдельном откидном модуле 8.

Размещение в откидных модулях 8 дополнительных солнечных батарей 12 и элементов крепления 13 резервных приборов служебных систем 14 позволяет увеличить мощность бортовых систем, повысить степень их резервирования и продлить расчетный срок функционирования космической платформы и космического аппарата, созданного на ее основе.

Взаимное разнесение мест установки полезной нагрузки 5 и приборов служебных систем 3, 14 (за счет их размещения в различных (отдельных) откидных модулях 8 и разворота откидных модулей 8 относительно несущего корпуса 1 на расстояние, требуемое для их нормального функционирования) обеспечивает снижение взаимовлияния электромагнитных полей, создаваемых приборами служебных систем 3,14 и полезной нагрузкой 5. При этом уменьшается вероятность нештатной работы бортовых систем, повышается достоверность полученных результатов функционирования полезной нагрузки 5, увеличивается срок службы отдельных приборов.

Выполнение откидных модулей 8 рамной конструкции уменьшает вероятность механических повреждений полезной нагрузки 5 при наземной подготовке космической платформы на космодроме, что обеспечивается размещением полезной нагрузки 5 внутри рамы 10 (рама 10 фактически является ограждающей (защитной) конструкцией).

Таким образом, предлагаемое устройство имеет существенные отличия и позволяет расширить функциональные возможности и улучшить эксплуатационные характеристики известных космических платформ.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Космическая платформа, содержащая несущий корпус, выполненный в форме параллелепипеда, снабженный откидными модулями, связанными с несущим корпусом разъемными шарнирными узлами, поворотными солнечными батареями, установленными на несущем корпусе с помощью электроприводов, приборами служебных систем, размещенными внутри несущего корпуса, элементы крепления полезной нагрузки и узлы соединения несущего корпуса с системой отделения, отличающаяся тем, что откидные модули снабжены механизмами поворота и узлами фиксации откидных модулей к несущему корпусу, при этом внутри откидных модулей размещены элементы крепления полезной нагрузки, а на откидных модулях установлены дополнительные солнечные батареи.

2. Космическая платформа по п.1, отличающаяся тем, что механизмы поворота откидных модулей снабжены реверсивными электроприводами, а узлы фиксации откидных модулей выполнены, например, в виде пирозамков.

Компания Bigelow Aerospace, занимающаяся изготовлением надувных модулей для орбитальной космической станции МКС, заявила о намерении создать собственные космические станции. Партнером проекта будет Центр по развитию науки в космосе - эта организация управляет американским сегментом Международной космической станции, МКС. Ну а управлять новыми космическими станциями будет учрежденная партнерами компания-оператор Bigelow Space Operations (BSO).

«Bigelow Space Operations будет заниматься продажей, управлением и эксплуатацией новых космических станций, созданных компанией Bigelow Aerospace», - сообщается в аккаунте организации в Twitter.

Компания считает , что ее станции могут с успехом использоваться госструктуры, частные компании и научные специалисты. Прежде, чем приниматься за реализацию сколь-нибудь серьезного проекта, компания займется изучением рынка. Дело в том, что коммерческая эксплуатация орбитальных станций это новое направление космонавтики, поэтому в вопросе необходимо детально разобраться.

На изучение рынка будет потрачено несколько миллионов долларов США. Конкурентом Bigelow Aerospace может быть Китай, у которого тоже есть планы по созданию собственной станции. Причем Поднебесная уже ведет переговоры о совместном использовании своей станции с партнерами из других стран. По мнению источников, близких к китайским чиновникам, которые реализуют эту программу, условия сотрудничества крайне привлекательны.

Запуски орбитальных модулей запланированы Bigelow на 2021 год. Тогда будет реализовано сразу два пуска - модулей B330-1 и B330-2. В модулях будут жить астронавты, причем на постоянной основе. Эти структуры - тестовые, и если они покажут себя хорошо, то компания запустит на орбиту целую орбитальную станцию, причем выведет ее в космос всего одна ракета. Дело в том, что модули станции, созданной Bigelow, будут сжаты, объем их в этом состоянии минимален. Проект будет реализоваться во Флориде, Алабаме или других подходящих местах.

Вся эта история началась с создания надувного пробного модуля для МКС. Его состыковали со станцией в 2016 году, со второй попытки прошло удачно. Как оказалось, стенки модуля достаточно прочные, чтобы выдержать условия космоса. Стены модуля - материал со сложной структурой, который состоит из волокон, подобных кевлару (из него изготавливаются бронежилеты и прочие защитные системы). В мае этого года исполнится уже два года, как модуль находится в космосе. За это время в стенки неоднократно врезались микрометеориты и фрагменты космического мусора, но оболочка оставалась неповрежденной.

Стенки способны защищать обитателей и от излучения. По мнению компании, изготовившей надувные модули, в них вполне может находится группа астронавтов, без всякого вреда для себя. Сейчас есть планы по созданию специального радиационного щита, которым собираются защищать оборудование, продукты или астронавтов - в зависимости от того, с какой целью будет использоваться модуль.


Тот самый модуль с МКС от Bigelow Aerospace

Что касается параметров модуля, то компания Bigelow Aerospace делает свои модули в 9 раз легче стандартных, которые обшиваются алюминием. Масса надувной системы - всего 1360 килограммов. А вот масса обычного модуля Unity составляет около 11 тонн. При этом Beam выводить на орбиту не в пример проще, поскольку он занимает минимальный объем ракеты-носителя.

Компания Bigelow Aerospace из Лас-Вегаса - одна из шести компаний, с НАСА на коммерческой основе в рамках проекта по разработке прототипов жилых модулей в дальнем космосе. Эти разработки, по плану НАСА, будут использоваться для создания орбитальных станций у Луны и Марса, не говоря уже о Земле. В рамках указанного сотрудничества НАСА выделяет шести компаниям $65 млн в течение двух лет, с возможностью дополнительного финансирования в следующем, 2018 году. При этом каждый из партнеров должен быть в состоянии покрыть минимум 30% стоимости работ за свой счет. Само партнерство получило название Next Space Technologies for Exploration Partnerships-2 (NextSTEP-2).

Сейчас руководство Bigelow решило продолжать работу и создать собственные станции, поскольку президент США Дональд Трамп отказался от финансирования МКС. Начиная с 2024-го года США не будет более продолжать свою миссию. Но если в космос отправятся частные орбитальные станции - это будет хорошим шансом для частной же космонавтики. Правительство тогда практически не будет участвовать во многих направлениях работы в этой сфере.

Если поехать в аэропорт Домодедово на электричке или аэроэкспрессе, то можно заметить самую «космическую» станцию железной дороги — небольшую платформу, которая носит неожиданное название «Космос».
В честь Дня Космонавтики я посетил эту платформу и готов показать ее подробнее, а заодно, расскажу, почему она так называется.

2. Аэроэкспрессы проезжают платформу «Космос» без остановок. Чтобы выйти здесь, нужно ехать на простой электричке. Также можно добраться на автобусе или дойти пешком от аэропорта, он сравнительно недалеко.

3. Платформа небольшая, на ней нет даже стационарных билетных касс. В объявлении написано, что в определенные часы работают мобильные кассы, но лично я никого не видел.

4. Откуда же такое название? Когда станция только начала работать, начальником здесь был Вячеслав Иванович Орлов, очень талантливый человек, который помимо работы на железной дороге писал стихи, прозу, заметки в газету.

5. «28 ноября 1958 года я был назначен начальником станции АГ (Аэропорт-Грузовая), получил ведомственную квартиру в посёлке на станции С (ныне - Авиационная) и почувствовал себя, как Лев Толстой, в своей «Неясной поляне», — рассказывает Вячеслав Иванович.

6. «Когда я пришел туда работать, никто даже не знал, что это аэропорт - настолько все было засекречено», — вспоминает Орлов. И смеется — когда станции придумывали название, сначала склонялись к варианту «Шишкино», поскольку неподалеку находился одноименный санаторий. Но Вячеслав Иванович пошутил: «Вот и будет начальник станции Шишкино одни шишки от руководства получать!»

7. Рядом уже были станции «Аэропорт», «Авиационная», «Взлетная». Вячеслав Иванович предложил пойти дальше. А дальше что? Правильно, космос. Так станция получила свое настоящее название. Вячеслав Орлов проработал начальником станции почти 30 лет. У него вышло несколько книг, среди них цикл «Космос на рельсах».

8. Сейчас станцией пользуются, в основном, сотрудники некоторых служб аэропорта, например, расположенного рядом хранилища топливозаправочного комплекса.

9. Сюда по железно дороге прибывает самолетное топливо. Впрочем, это уже