Средняя скорость интернета в японии. Оптоволоконная сеть Nuro является самым быстрым домашним Интернетом не только в Японии, но и в мире

При переделке приборных панелей возникает потребность в регулировке яркости установленных плат. Особенно это нужно, если долго находишься за рулем в темное время суток. Все таки светодиоды светят сочнее и ярче, чем обычные лампы, да и без регулятора работа выглядит не законченной.

Вопрос решается покупкой готового диммера для регулировке светодиодных лент или простым переменным резистором, установленным в разрыв сети. Это не наш метод. Регулятор должен быть на ШИМе (широтно-импульсный модулятор).

ШИМ-регулировка заключается в периодическом включении и выключении тока через светодиод на короткие промежутки времени. Чтобы избежать эффекта мерцания, воспринимаемого человеческим зрением, частота этого цикла должна быть не менее 200Гц.

Одним из вариантов регулировки яркости светодиодов является простое устройство на базе популярного таймера 555, который осуществляет эту операцию с помощью ШИМ-сигнала. Основной компонент схемы – таймер 555, который формирует ШИМ-сигнал, встроенный генератор меняет скважность импульсов с частотой 200Гц.

Переменный резистор с помощью двух импульсных диодов осуществляет регулировку яркости. Не маловажный элемент схемы - ключевой полевой транзистор, работающий по схеме с общим истоком. Схема диммера способна осуществлять регулировку яркости в диапазоне от 5% до 95%.

Теория пройдена. Переходим к практике.

Было поставлено два условия:
1. Схема должны быть собрана на SMD компонентах
2. Минимальные размеры.

Сразу возникают трудности в подборе компонентов. В моем случает основное пришлось покупать в Мекке радиолюбителей - магазин «Чип и Дип» и ждать две недели доставкой, мать его, Почтой России. Остальное искать по местным магазинам.

Это самое сложное, т.к. их всего пара штук. Скажу сразу получилось не с первого раза, пришлось поломать голову с полевым транзистором и несколько раз переделывать/перерисовать/перепаивать.

За основу взята классическая схема:

В схему внесены изменения:
1. Емкости заменены на 0,01мкф и 0,1мкФ
2. Заменен транзистор на IRF7413. Держит 30В 13А. Шикарно!

Первый и второй вариант.

Версия 1 и версия 2.

Как видно во второй версии еще уменьшил общие размеры и заменил полевик, емкость.

Сравнение. Для наглядности размеров.

С учетом всех ошибок переделал схему и еще немного уменьшим общие замеры.

Победа!

Максимум яркости



Сегодня мы постараемся сделать контроллер, который будет регулировать яркость светодиода. Материалы для данного теста были взяты с сайта led22.ru из статьи "Светодиоды для авто своими руками". 2 основные детали, используемые в даннном эксперименте - стабилизатор тока LM317 и переменный резистор. Их можно увидеть на фотографии ниже. Отличие нашего эксперимента от приведенного в оригинальной статье - мы так и оcтавили переменный резистор для регулироваки света светодиода. В магазине радиодеталей (не самом дешевом, но всем очень известном) мы приобрели данные детали за 120 рублей (стабилизатор - 30р, резистор - 90р). Здесь хочется отметить, что резистор российского производства "тембр", обладающий максимальным сопротивлением в 1кОм.

Схема подключения: на правую ножку стабилизатора тока LM317 подается "плюс" от блока питания 12V. К левой и средней ножкам поключается резистор переменного тока. Так же, к левой ножке подключается плюсовая ножка светодиода. Минусовой провод от блока питания подключается к минусовой ножке светодиода.

Получается, что ток, проходя через Lm317, уменьшается до величины, заданной сопротивлением переменного резистора.

На практике решено было припаять стабилизатор прямо на резистор. Сделано это в первую очередь для отведения тепла от стабилизатора. Теперь он будет нагреваться вместе с резистором. На резисторе у нас расположено 3 контакта. Мы используем центральный и крайний. Какой имеено крайний использовать - для нас не важно. В зависимости от выбора, в одном случае при повороте ручки по часовой стрелке яркость будет увеличиваться, в противоположном случае - уменьшаться. Если подключить крайние контакты, сопротивление будет постоянно 1 кОм.

Припаиваем провода, как на схеме. К коричневому проводу будет подходить "плюс" от блока питания, синий - "плюс" к светодиоду. При пайке специально оставляем побольше олова, чтобы была лучше теплопередача.

И напоследок одеваем термоусадку, чтобы исключить возможность короткого замыкания. Теперь можно пробовать.

Для первого теста мы используем светодиоды:

1) Epistar 1W, рабочее напряжение - 4V (в нижней части следующей фотографии).

2) Плоский диод с тремя чипами, рабочее напряжение - 9V (в верхней части следующей фотографии).

Результаты (можно увидеть в следующем ролике) не могут не радовать: ни один диод не сгорел, яркость регулируется плавно от минимума до максимума. Для питания полупроводника основное значение имеет ток питания, а не напряжение (ток растет экспоненциально относительно напряжения, при повышении напряжения резко повышается вероятность "сжечь" светодиод.

После чего проводится тест со светодиодными модулями на 12V. И на них наш контроллер отрабатывает без проблем. Именно этого мы и добивались.

Спасибо за внимание!

Rich Rosen, National Semiconductor

Введение

Экспоненциальный рост количества светодиодных источников света сопровождается столь же бурным расширением ассортимента интегральных схем, предназначенных для управления питанием светодиодов. Импульсные драйверы светодиодов давно заменили неприемлемые для озабоченного экономией энергии мира прожорливые линейные регуляторы, став для отрасли фактическим стандартом. Любые приложения, от ручного фонарика до информационных табло на стадионах, требуют точного управления стабилизированным током. При этом часто бывает необходимо в реальном времени изменять интенсивность излучения светодиодов. Управление яркостью источников света, и, в частности, светодиодов, называется диммированием. В данной статье излагаются основы теории светодиодов и описываются наиболее популярные методы диммирования с помощью импульсных драйверов.

Яркость и цветовая температура светодиодов

Яркость светодиодов

Концепцию яркости видимого сета, испускаемого светодиодом, понять довольно легко. Числовое значение воспринимаемой яркости излучения светодиода может быть легко измерено в единицах поверхностной плотности светового потока, называемых кандела (кд). Суммарная мощность светового излучения светодиода выражается в люменах (лм). Важно понимать, также, что яркость светодиода зависит от средней величины прямого тока.

На Рисунке 1 изображен график зависимости светового потока некоторого светодиода от прямого тока. В области используемых значений прямых токов (I F) график исключительно линеен. Нелинейность начинает проявляться при увеличении I F . При выходе тока за пределы линейного участка эффективность светодиода уменьшается.

Рисунок 1.

При работе вне линейной области значительная часть подводимой к светодиоду мощности рассеивается в виде тепла. Это потраченное впустую тепло перегружает драйвер светодиода и усложняет тепловой расчет конструкции.

Цветовая температура светодиодов

Цветовая температура является параметром, характеризующим цвет светодиода, и указывается в справочных данных. Цветовая температура конкретного светодиода описывается диапазоном значений и смещается при изменении прямого тока, температуры перехода, а также, по мере старения прибора. Чем ниже цветовая температура светодиода, тем ближе его свечение к красно-желтому цвету, называемому «теплым». Более высоким цветовым температурам соответствуют сине-зеленые цвета, называемые «холодными». Нередко для цветных светодиодов вместо цветовой температуры указывается доминирующая длина волны, которая может смещаться точно также, как цветовая температура.

Способы управления яркостью свечения светодиодов

Существуют два распространенных способа управления яркостью (диммирования) светодиодов в схемах с импульсными драйверами: широтно-импульсная модуляция (ШИМ) и аналоговое регулирование. Оба способа сводятся, в конечном счете, к поддержанию определенного уровня среднего тока через светодиод, или цепочку светодиодов. Ниже мы обсудим различия этих способов, оценим их преимущества и недостатки.

На Рисунке 2 изображена схема импульсного драйвера светодиода в конфигурации понижающего преобразователя напряжения. Напряжение V IN в такой схеме всегда должно превышать сумму напряжений на светодиоде и резисторе R SNS . Ток дросселя целиком протекает через светодиод и резистор R SNS , и регулируется напряжением, подаваемым с резистора на вывод CS. Если напряжение на выводе CS начинает опускаться ниже установленного уровня, коэффициент заполнения импульсов тока, протекающего через L1, светодиод и R SNS увеличивается, вследствие чего увеличивается средний ток светодиода.

Аналоговое диммирование

Аналоговое диммирование - это поцикловое управление прямым током светодиода. Проще говоря, это поддержание тока светодиода на постоянном уровне. Аналоговое диммирование выполняется либо регулировкой резистора датчика тока R SNS , либо изменением уровня постоянного напряжения, подаваемого на вывод DIM (или аналогичный вывод) драйвера светодиодов. Оба примера аналогового управления показаны на Рисунке 2.

Аналоговое диммирование регулировкой R SNS

Из Рисунка 2 видно, что при фиксированном опорном напряжении на выводе CS изменение величины R SNS вызывает соответствующее изменение тока светодиода. Если бы было возможно найти потенциометр с сопротивлением менее одного Ома, способный выдержать большие токи светодиода, такой способ диммирования имел бы право на существование.

Аналоговое диммирование с помощью управления напряжением питания через вывод CS

Более сложный способ предполагает прямое поцикловое управление током светодиода с помощью вывода CS. Для этого, в типичном случае, в петлю обратной связи включается источник напряжения, снимаемого с датчика тока светодиода и буферизованного усилителем (Рисунок 2). Для регулировки тока светодиода можно управлять коэффициентом передачи усилителя. В эту схему обратной связи несложно ввести дополнительную функциональность, такую, например, как токовую и температурную защиту.

Недостатком аналогового диммирования является то, что цветовая температура излучаемого света может зависеть от прямого тока светодиода. В тех случаях, когда изменение цвета свечения недопустимо, диммирование светодиода регулированием прямого тока применяться не может.

Диммирование с помощью ШИМ

Диммирование с помощью ШИМ заключается в управлении моментами включения и выключения тока через светодиод, повторяемыми с достаточно высокой частотой, которая, с учетом физиологии человеческого глаза, не должна быть меньше 200 Гц. В противном случае, может проявляться эффект мерцания.

Средний ток через светодиод теперь становится пропорциональным коэффициенту заполнения импульсов и выражается формулой:

I DIM-LED = D DIM × I LED

I DIM-LED - средний ток через светодиод,
D DIM - коэффициент заполнения импульсов ШИМ,
I LED - номинальный ток светодиода, устанавливаемый выбором величины сопротивления R SNS (см. Рисунок 3).


Рисунок 3.

Модуляция драйвера светодиодов

Многие современные драйверы светодиодов имеют специальный вход DIM, на который можно подавать ШИМ сигналы в широким диапазоне частот и амплитуд. Вход обеспечивает простой интерфейс со схемами внешней логики, позволяя включать и выключать выход преобразователя без задержек на перезапуск драйвера, не затрагивая при этом работы остальных узлов микросхемы. С помощью выводов разрешения выхода и вспомогательной логики можно реализовать ряд дополнительных функций.

Двухпроводное ШИМ-диммирование

Двухпроводное ШИМ-диммирование приобрело популярность в схемах внутренней подсветки автомобилей. Если напряжение на выводе VINS становится на 70% меньше, чем на VIN (Рисунок 3), работа внутреннего силового MOSFET транзистора запрещается, и ток через светодиод выключается. Недостаток метода заключается в необходимости иметь схему формирователя сигнала ШИМ в источнике питания преобразователя.

Быстрое ШИМ-диммирование с шунтирующим устройством

Запаздывание моментов включения и выключения выхода конвертора ограничивает частоту ШИМ и диапазон изменения коэффициента заполнения. Для решения этой проблемы параллельно светодиоду, или цепочке светодиодов, можно подключить шунтирующее устройство, такое, скажем, как MOSFET транзистор, показанный на Рисунке 4а, позволяющий быстро пустить выходной ток преобразователя в обход светодиода (светодиодов).


а)

б)
Рисунок 4. Быстрое ШИМ диммирование (а), формы токов и напряжений (б).

Ток дросселя на время выключения светодиода остается непрерывным, благодаря чему нарастание и спад тока перестают затягиваться. Теперь время нарастания и спада ограничивается только характеристиками MOSFET транзистора. На Рисунке 4а изображена схема подключения шунтирующего транзистора к светодиоду, управляемому драйвером LM3406 , а на Рисунке 4б показаны осциллограммы, иллюстрирующие различие результатов, получаемых при диммировании с использованием вывода DIM (сверху), и при подключении шунтирующего транзистора (внизу). В обоих случаях выходная емкость равнялась 10 нФ. Шунтирующий MOSFET транзистор типа .

При шунтировании тока светодиодов, управляемых преобразователями со стабилизаций тока, надо учитывать возможность возникновения бросков тока при включении MOSFET транзистора. В семействе драйверов светодиодов LM340x предусмотрено управление временем включения преобразователей, что позволяет решить проблему выбросов. Для сохранения максимальной скорости включения/выключения емкость между выводами светодиода должна быть минимальной.

Существенным недостатком быстрого ШИМ-диммирования, по сравнению с методом модуляции выхода преобразователя, является снижение КПД. При открытом шунтирующем приборе на нем рассеивается мощность, выделяющаяся в виде тепла. Для снижения таких потерь следует выбирать MOSFET транзисторы с минимальным сопротивлением открытого канала R DS-ON .

Многорежимный диммер LM3409

  • Глаз "инструмент" хороший, но без "численных" значений. Только спектрометр может что-то конкретное показать. Ссылку плиз. И Вы серьёзно верите, что что-то делается за пределами "Китая" (азиатские страны)?
  • Ссылочку, пожалуйста.
  • =Влад-Перм;111436]Владимир_007 "Что бы продлить срок службы, рядом с ним ставят (в притык) еще несколько светодиодов,"? - У меня много светодиодов стоит рядом, чтобы увеличить суммарную яркость........... Я извиняюсь, чисто случайно попал на эту ветку повторно. Номеров 6 - 8 назад в радиолоцмане была статья, где так же вставлял свою реплику. За качество изделий на светодиодах упоминать не скромно, пару журнало назад у автомобилиста была статья на фары - о перегреве светодиода. Так 6 - 8 номеров назад в статье была схемка драйвера, представляющая собой переключатель гирлянд на 4 канала. "благодаря драйверу, увеличиваем срок службы светодиода в 4 раза за счет того, что он работает в 4 раза реже, так же 2_й +, продолжительность работы кристалла диода с графиком по экспоненте увеличивает срок службы за счет уменьшения температуры кристалла" - примерно дословно на память. Что касается фотографирования фар - светодиод, это стробоскоп для человеческого глаза, но с очень большой скоростью переключения и пока ни кто не похвастался увеличением (послесвечения) светодиода после пропадания напряжения.
  • Уважаемый Владимир_666, здравствуйте. С чего Вы это решили? При питании светодиода постоянным током формируется непрерывный поток светового излучения. При питании импульсным током - формируются световые импульсы. Светодиод безынерционен. Это его замечательное свойство широко используется при передаче цифровой информации по оптическому волокну со скоростью десятки Гигабайт в секунду и более. Для него и люминофор нужен соответствующий, не создающий послесвечения. Полагаю, Вы это прекрасно понимаете. Говоря про стробоскоп Вы, очевидно, имеете ввиду отдельные кванты света. Но их пока не научились использовать по отдельности. Непонятно, кто и за что поставил "минус"?
  • САТИР, Вы отчасти травы в том, что Светодиод безинерционен. Это справедливо для светодиодов с "голым" кристаллом. Белые светодиоды разрабатываемые для освещения имеют слой люминофора. А он имеет некоторое время послесвечения (несколько миллисекунд), что вполне достаточно при питании импульсами с частотой в килогерцы. Кроме того, в драйверах устанавливается фильтрующий конденсатор.
  • Уважаемый lllll, здравствуйте. Совершенно с Вами, абсолютно. Согласитесь, ведь люминофор лишь принадлежность самого светодиода для придания ему нужных свойств.
  • Добрый день. Под словом стробоскоп с большой частотой - я подразумевал именно стробоскоп. Если взять свечение обычной лампочки у которой максимальное напряжение 220В и минимальное 0 и это с частотой 50 Гц - температура нити при 220В - 2200 градусов, но когда напряжение падает до 0 и опять поднимается до 220В, температура нити не падает до 0, а опускается до 1500 - 1800 градусов, что мы и видим "не вооружонным глазом". Что касается светодиода - у них принцип работы - стробоскоп, с большой скоростью переключения, который не видно человеческим глазом, но это не говорит о не влиянии на зрение. Что касается передачи данных гигпбайты в секунду - обычно передачу данных передают (азбукой морзе, мигающей лампочкой), я понимаю, что бы человеку поставить (-), можно быть и тупым, если Вы по отзывам людей считаете себя так же умным - определитесь сами где у Вас постоянно горящая лампочка и кому из нас нужно ставить -.
  • Ну как-бы 50 Гц. это две полу синусоиды и реально моргают 100 Гц. и напряжение амплитудное около 300 В. Кто Вам такое сказал? Или где Вы это прочитали? О принципе работы почитайте в "Вике", а тема вроде о питании светодиодов. Нормальный драйвер питает светодиод постоянным таком. ШИМ регуляторы применяются только если надо ДЁШЕВО уменьшить яркость свечения. Хороший драйвер, опять же, умеет уменьшать ток на светодиод без использования ШИМ. ШИМ применяют в фонариках многорежимных - и если драйвер хоть немного адекватный частота ШИМ от нескольких кГц. Совсем незаметно при любом использовании. Ага, у меня тоже, когда винчестер данные передаёт, "лампочка" (светодиод) мигает, быстро так мигает! Это она данные передаёт!
  • Не трогайте Владимира666. Не понимает он как работает светодиод. И, очевидно, не поймет. Придумал для себя объяснение неправильное и толкает его всем налево и на право.
  • Всё выше сказанное - с точностью "до наоборот"
  • ctc655 я думаю я Вам в понятной форме расписал, что постоянно горящая лампочка не может передавать информацию, если Вы пытаетесь своими действиями не профессиональными защитить производителей светодиодов со своей минусовкой
  • Спасибо Владимир666. Мое мнение о вас не улучшилось. Увы. Еще в детстве, лет 38 назад делали светотелефон на ЛАМПОЧКЕ. Запитана была от постоянного тока. Работало. Информацию передавал. Другое дело с какой скоростью, если можно так сказать. А вот ваше представление о работе светодиода - бред. То он у вас разрядник, то стробоскоп. Молодеж почитает и потом начнет говорить чушь. Если тяжело понять, не лезьте. За это и получили -1. Это оценка информативности сообщения. ВАаши сообщения не только не несут информативности, но еще и дают ошибочное представление о теме. Там где нет такой большой ахинеи, я ничего не ставлю.
  • Просмотрите тему на этом же сате, что бы было понятно почему повторно! http://www....007#post199007 Обсуждение: Осветительные приборы на основе светодиодов переменного тока находят свою нишу и, возможно, выйдут за ее пределы Мне так же не 10 и не 30 лет, но Вам почитать будет полезно. Увеличить знания кроме высокотехнологичного прибора с р-п переходом. Интересно, как же Вы 30 лет назад лампочкой горящей на постоянном токе инфорсацию передавали? Все световые приборы, не важно - оптрон, оптотиристор и т.д. все работают за счет прерываний светового потока. Наверно специально патент для этого создали?
  • Обоснуйте или подтвердите. Я "электронщик" - можете не ограничиваться в терминологии. То, что драйвер (питание от 220 В.) работает по схеме АС (220 В.) -- DC (300 В.) -- AC ШИМ -- DC (стабильный нужный ток СС) -- СС на светодиод, не делает его ШИМ регулятором. (это можно назвать и просто выпрямителем напряжения!) ШИМ с обратной связью это просто один из способов выдерживать стабильную яркость (ток) светодиода. А вот регулировать яркость можно двумя способами: в указанной цепочке в "АС ШИМ" дополнительно ввести регулировку "заполнения" (светодиод будет питаться регулируемым стабильным током) или регулировать ШИМ-ом уже непосредственно средний ток на светик. В первом случае питается стабильным током (пульсации нет!) во втором случае светодиод питается "импульсами" и их в принципе видно. (не обязательно глазами - в фонариках встречал частоту и 200 Гц. и 9 кГц.) Азбукой "Морзе" - это что-ли не передача информации?
  • Честно говоря я не знаю зачем подтверждать известную истину. Может, конечно, есть какие то нюансы в разработке регулируемых драйверов(а они должны быть). Я не занимался пока этим. Поэтому предложенные вами методы регулирования имеют право на жизнь. Вот только применяются каждый по своему. По поводу азбуки Морзе. Да, это передача информации, но с перерывом светового потока. А тот светотелефон работал на изменении яркости лампочки без погасания. При отсутствии речи светил постоянно. Схему не нашел. Делали в кружке и еще не было привычки зарисовывать схемы. Также некоторые закрытые оптопары, резисторная например, может работать без прерывания светового потока.
  • Уважаемый ctc655, здравствуйте. Вы абсолютно правы. Подобный метод передачи звука применяется до сих пор в кино. По краю плёнки есть световая дорожка, модулирующая световой поток, который преобразуется в электрический сигнал. Метод существует со времени изобретения звукового кино! Именно он погубил тапёров.
  • Про это как то и забыл. Хотя может сейчас по другому. Честно давно не интересовался кино.
  • Я не спорю, что без погасания лампочки и схемы могут быть разные, от обычной логики до 554СА..(3) компараторов, можно и просто свечение лампочки и перед лампочкой "флажком" дергать, но передача сигнала всегда работала по изменению "1" и "0".
  • В цифровых устройствах - да. А датчики уровня освещённости что, тоже работают по погасанию лампочки или солнца? Причём уровень освещённости регулируется......
  • Предыдущая тема или спор, если Вы читали - была о передаче данных "якобы постонно горящей лампочкой" от источника постоянного тока, то есть аккумулятор или стабилизированный источник питания. (Не хочу поднимать тему - где же заканчивается переменное напряжение и начинается постоянное, так как на эту тему сейчас в нете куча споров, начиная с самого аккумулятора.....) Что касается уровня освещенности, Вы о датчиках движения или о ночном освещении допустим вокруг витрин магазинов? Кажется во 1_х свет в обычном понятии - немного не соответствует теме, а вот принцип практически тот же!

Наверное, многие кто делал регулировку яркости свечения светодиодов посредством ШИМ, замечали, что при линейном увеличении коэффициента заполнения, яркость светодиода вначале растет быстро, а затем почти не изменяется, вплоть до максимального значения. А связано это явление с тем что, интенсивность зрительного ощущения имеет нелинейную зависимость от интенсивности излучения источника. Это утверждение справедливо не только для зрительного восприятия, но и для ряда других ощущений (слух, обоняние и т.д.).

На основе экспериментов Э. Вебера, Г. Фехнер сформулировал психофизиологический закон (закон Вебера – Фехнера), согласно которому интенсивность ощущения пропорциональна логарифму интенсивности раздражителя: S=k×ln(R), где R – интенсивность раздражителя, S – интенсивность ощущения, k – константа зависящая от единиц измерения.

Позже С. Стивенс произвел модификацию закона Вебера – Фехнера, считая, что зависимость носит характер общей степенной функции с различными показателями степени для каждого вида ощущений (закон Стивенса ): S=k×R n , где n – показатель степени, зависящий от вида ощущений. Для зрительного ощущения яркости, степенной показатель имеет значение n=0,33; при условии адаптированного к темноте наблюдателя и размере раздражителя в 5 градусов.

В общем, я построил графики этих функций в программе Mathcad, где вместо интенсивности раздражителя (R) подставил значения коэффициента заполнения ШИМ сигнала, от 0 до 255 (8-ми битный ШИМ). Константу k подобрал так, чтобы при максимальном световом потоке (коэффициент заполнения равен 255) значение интенсивности ощущения (S) равнялось числу 100, просто для удобства.


Из обоих графиков при этом можно увидеть, что при линейном увеличении коэффициента заполнения, а соответственно и светового потока от светодиода, интенсивность ощущения вначале растет быстро, а затем темп роста замедляется, отсюда и получается такое неравномерное увеличение яркости светодиода.

Чтобы получить линейное увеличение яркости, необходимо проделать обратную процедуру, вычислить значения переменной R (коэффициент заполнения ШИМ) при линейном увеличении переменной S (интенсивность ощущения). При расчете задаем 256 значений для S. В программе Mathcad я разбил ранее заданный диапазон значений S (0-100) на 256, лишь для того чтобы не менять коэффициент k, и вычислил соответствующие значения R. В результате получил две таблицы, логарифмическую и степенную, с коэффициентами заполнения для ШИМ.

Для наглядной демонстрации законов в действии, спаял схему на макетной плате, куда установил 3 светодиода белого свечения мощностью 1 Вт каждый. За основу взял проект , то есть такие же стабилизаторы тока и 3-х канальный программный ШИМ, в данном случае реализованный на микроконтроллере PIC16F628A, ток через светодиоды установил на уровне 0,3 А. Программа простая, циклическая, постепенное увеличение, а затем уменьшение коэффициента заполнения ШИМ. Для светодиода HL1 коэффициент заполнения меняется линейно, для НL2 коэффициент берется из заранее рассчитанной логарифмической таблицы, для HL3 соответственно из степенной таблицы. Нажатия на кнопку SB1 приводят к поочередной смене линейного коэффициента заполнения между двумя значениями 255 и 128, причем значению 128 из логарифмической таблицы соответствует коэффициент 16, из степенной 31. Этот режим я сделал для того чтобы сравнить визуальное изменение яркости для разных законов, то есть яркость светодиодов должна в 2 раза увеличиваться и уменьшаться.


Также можно подключить обычные светодиоды без стабилизаторов тока, как показано на схеме ниже.


На видеоролике можно пронаблюдать результат применения различных законов, слева применяется линейный ШИМ, в середине логарифмический, справа степенной.

Как видно, по зрительному восприятию, наиболее правильное изменение яркости соответствует логарифмическому и степенному ШИМ. Линейный ШИМ, как и следовало ожидать приводит к неравномерному изменению яркости. Казалось бы, при уменьшении коэффициента заполнения ШИМ с 255 до 128, яркость должна упасть также в 2 раза, но на самом деле такого не происходит, яркость уменьшается незначительно. Как по мне, то лучше всего для восприятия подходит логарифмический ШИМ, правда там возникает небольшая проблема, минимальный коэффициент заполнения ШИМ при расчетах получается равным единице, нулевой коэффициент не получить, но это можно исправить, заменив в готовой таблице несколько первых значений с 1 на 0.

Светодиоды больше и больше входят в нашу повседневную жизнь. Мы меняем лампы накаливания в квартире или доме, галогенные в машине на светодиодные. Для того чтобы регулировать яркость лампочки Эддисона обычно применяют диммер - эта такая штука с помощью которой можно ограничивать переменный ток, тем самым меняя яркость свечения на нужную вам, зачем же платить больше, да еще и чувствовать дискомфорт из-за чрезмерно яркого света? Регулятор мощности вообще может использоваться для многих потребителей (паяльник, болгарка, пылесос, дрель...) от переменного напряжения сети, построены они, как правило, на основе симистора.

Светодиоды питаются от постоянного и стабилизированного тока, так что тут применить стандартный диммер не удастся. Если просто изменять напряжение, подаваемое на него то яркость будет изменяться очень резко, для них важен ток, но вместо регулятора тока мы сделаем нечто другое, а именно ШИМ (Широко Импульсный Модулятор), он будет на некоторое определенное время отключать источник питания от светодиода, яркость уменьшится, но мигание замечать мы не будем, так как частота такая, что глаз человека этого не заметит. Тут не используетсямикроконтроллеры, ведь их наличие может стать препятствием к сборке устройства, нужно иметь программатор, определенное программное обеспечение... Поэтому в этой простой схеме используется только простые и общедоступные радиокомпоненты.

Вот такую штуку возможно использовать для любых инерционных нагрузок, то есть тех, которые могут запасать энергию, ведь, если, к примеру, отключить DC моторчик от источника питания то вращаться он перестанет никак не моментально.

Схему, как я считаю, условно можно разделить на две части, а именно это генератор, выполненный на мега-популярном таймере NE555 (аналог -КР1006ВИ1) и мощный открывающийся/закрывающийся транзистор, с помощью которого подается питание для нагрузки (здесь 555 работает в режиме астабильного мультивибратора). У нас используется мощный биполярный транзистор NPNструктуры (я взял TIP122), но возможно заменить его полевым (MOSFET)транзистором. Частота импульсного генератора, период, длительность импульса при этом выставляется двумя резисторами (R3,R2) и конденсаторами (C1,C2), а изменять ее мы сможем резистором с регулировкой сопротивления.

Компоненты-схемы

Существует куча программ для расчета аналогового таймера 555, можете поэкспериментировать с номиналами компонентов, которые и влияют на частоту генератора - это все легко просчитается с помощью многих программ, таких как эта. Номиналы можно немного менять, все будет работать и так. Импульсные диоды 4148 без проблем заменяются отечественными КД222. Конденсаторы 0,1 мкФ и 0,01 мкФ дисковые керамические. Переменным резистором устанавливаем частоту, для хорошей и плавной регулировки его максимальное сопротивление 50 кОм.

Все собрано на дискретных элементах, плата имеет размеры 50-25 мм.

Как работает схема?

Устройство работает как переключатель между двумя режимами: ток подается на нагрузку и ток не подается на нагрузку . Переключение происходит настолько быстро что наши глаза не видят этого мигания. Так вот, это устройство регулирует мощность путем изменения интервала между временем, когда питание подается и когда оно отключено.Думаю, вы поняли суть ШИМа. Вот так вот это выглядит на экране осциллографа.

Первая картинка отображает слабое свечение, потому что во время периода Tдлинна импульса t1 занимает только 20% (это так называемый коэффициент заполнения), а все остальные 80% у нас наблюдается логический 0 (отсутствует напряжение).

Вторая картинка показывает нам сигнал, который называется меандр, тогда у нас t1=0.5*T, то бишь скважность и Коэф. Заполнения равны 50%.

В третьем случае мы имеем D=90%. Светодиод светит почти на полную яркость.

Представим что T=1 секунде, тогда в первом случае

§ 1)в течении 0,2с будет идти ток на светодиод, а 0,8с нет

§ 2)0,5с подается ток 0,5с нет

Кстати, сделав три платки ШИМ регуляторов по схеме и подключив их к одной RGB ленте появляется возможность выставлять нужную гамму свечения. Каждая из плат управляет своими светодиодами (красными, зелеными и синими) и смешивая их в определенной последовательности вы добиваетесь нужного свечения.

Какие же потери энергии у этого устройства?

Во-первых, это жалкие несколько миллиампер, которые потребляют импульсный генератор на микросхеме, а далее идет силовой транзистор, на котором рассеивается мощность равная примерно P=0.6V*I потреблениянагрузки . Базовым резистором можно пренебречь. В целом потере на ШИМе минимальны ведь система регулирования по ширине импульса очень эффективна, так как в пустую тратится очень мало энергии (и, следовательно, выделяется мало тепла).

Итог

В итоге мы получили прекрасный и простой ШИМ. Им оказалось очень удобно настраивать для себя приятную силу свечения. Такое устройство всегда пригодится в быту.

  • Вперёд >