Динамический диапазон камеры. Динамический диапазон и его практическое значение

Определение


Ввиду смысловой схожести таких фотографических параметров, как динамический диапазон и фотографическая широта, в применении этой терминологии существует изрядная путаница. Природа этой путаницы — в непонимании отношения реальных яркостей к их отображению на плёнке или в цифре. Попробую внести ясность.

Фотографическая широта — максимально возможный диапазон внешних яркостей, которые может каким либо образом зафиксировать фотоустройство (фотоаппарат, в том числе и цифровой, сканер и т.п.) внутри одного кадра.

Динамический диапазон — максимально возможный полезный диапазон оптических плотностей плёнки, фотобумаги и т.п. или максимально возможный полезный диапазон количеств электронов, могущих помещаться в каждом пикселе электронной матрицы фотоустройства.

Таким образом, термин «фотографическая широта» применяется для оценки запечетлеваемого диапазона внешних яркостей, а динамический диапазон — для оценки физических свойств внутреннего носителя (оптическая плотность плёнки, ёмкость и шумность пикселей матрицы и т.п.).

Примеры :

Фотографическая широта плёнки (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей. Приблизительные значения для негативов 2,5-9 EV, для слайдов 2-4 EV, для киноплёнки 14EV.
Динамический диапазон плёнки (диапазон оптических плотностей) — её способность в некотором диапазоне изменять свою прозрачность (оптическую плотность) в зависимости от воздействия внешней яркости. Приблизительные значения для негативов 2-3D, для слайдов 3-4D.

Фотографическая широта фотобумаги (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей (от фотоувеличителя). Типичные значения для чёрно-белых бумаг: 0,7-1,7 EV.
Динамический диапазон фотобумаги
(диапазон оптических плотностей) — её способность в некотором диапазоне изменять степень отражения (оптическую плотность) в зависимости от внешней яркости (от фотоувеличителя). Типичные значения от 1,2 до 2,5D.

Фотографическая широта матрицы цифрового аппарата — способность её фиксировать некоторый диапазон внешних яркостей. У цифрокомпактов 7-8 EV, у зеркалок 10-12 EV.
Динамический диапазон матрицы цифрового фотоаппарата — способность пикселей матрицы в некотором количественном диапазоне накапливать разное количество электронов в зависимости от уровня внешней яркости. Динамический диапазон цифрокомпактов — 2,1-2,4D, а зеркалок — 3-3,6D.

Фотографическая широта графического файла — Поскольку файл — это всего лишь способ хранения информации, то за счёт потери градаций в любой формат файла можно запихнуть любой диапазон внешних яркостей. Стандартные величины у формата восьмибитного JPEG — это 8 EV, у HDRI (Radiance RGBE) — до 252 EV. От количества бит, выделяемых для хранения каждого пикселя, этот параметр зависит лишь косвенно, поскольку способ упаковки информации в эти биты у разных форматов различен.
Динамический диапазон графического файла — способность файла хранить в себе некоторый диапазон значений каждого пикселя.

Фотографическая широта монитора — Поскольку монитор — это только устройство отображения, то этот параметр не имеет особого смысла. Ближайшим по смыслу параметром будет способность монитора отображать закодированный в графическом файле диапазон значений яркости. Но он зависит в основном от используемого цветового профиля и программы отображения, которые с тем или иным успехом втискивают всю (или не всю) фотографическую широту изображения, содержащуюся в файле, в рамки динамического диапазона монитора. Замечу, что чем большая фотоширота втиснута в динамический диапазон, тем менее контрастно выглядит изображение.
Динамический диапазон монитора (контрастность) — способность пикселя монитора в некотором диапазоне изменять свою яркость в зависимости от напряжения входящего сигнала. Динамический диапазон современных мониторов находится в пределах 2,3 - 3D (200:1 — 1000:1) .

Фотографическая широта матрицы сканера — способность её фиксировать некоторый диапазон яркостей отражённого от бумаги или пропущенного через плёнку света. Составляет от 6 EV у офисных планшетных до 16 EV у профессиональных барабанных сканеров.
Динамический диапазон матрицы сканера — способность пикселей матрицы сканера в некотором количественном диапазоне накапливать разное количество электронов в зависимости от яркости отражённого от бумаги или пропущенного через плёнку света. Динамический диапазон сканеров может принимать значения от 1,8D у офисных планшетников до 4,9D у профессиональных барабанных сканеров.

Примечание по сканеру : Поскольку лампа сканера создаёт постоянную освещённость сканируемого материала, верхняя граница яркости этого материала фиксирована (абсолютно белый лист или полностью прозрачная плёнка). Поэтому и верхняя граница динамического диапазона матрицы фиксирована, будучи подогнанной под эту максимальную яркость. Следовательно, величины фотографической широты и динамического диапазона совпадают. Кроме того, зная динамический диапазон плёнки (бумаги) и его сдвиг относительно полной прозрачности (абсолютной белизны), можно смело сравнить динамические диапазоны плёнки (бумаги) и сканера, и определить, сможет ли тот или иной сканер оцифровать плёнку (бумагу) без потерь градаций. Для справки: динамический диапазон вуали (максимальной прозрачнгости) фотоплёнок приблизительно составляет 0,1D.

Обшее примечание 1. Не все вышеперечисленные словосочетания реально используются, но они упомянуты для полноты картины, чтобы яснее можно было прочувствовать разницу между фотографической широтой и динамическим диапазоном.

Обшее примечание 2. Очевидно, что фотографическая широта и динамический диапазон для одного и того же аналогового фотоустройства или материала имеют разные величины, даже если их попытаться выразить в одинаковых единицах. Для цифровых же фотоустройств эти параметры имеют одну величину. Из-за этого понятие фотошироты обычно подменяется понятием динамического диапазона. К счастью, для цифровых фотоустройств это не критично.

Единицы измерения


Динамический диапазон измеряют по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 10 раз, а фотографическую широту по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 2 раза.

Исходя из понятия логарифма (показатель степени, в которую надо возвести одно число, чтобы получить другое), обе эти шкалы являются логарифмическими. В первом случае используется логарифм по основанию 10 (десятичный логарифм — log 10 или lg), во втором — по основанию 2 (двоичный логарифм — log 2 или lb).

Десятичный логарифм используется для компактности шкалы динамического диапазона и соответствия каждого следующего деления шкалы динамического диапазона зрительному ощущению падения яркости в 2 раза при фактическом десятикратном падении величины измеряемого параметра, а двоичный — для соответствия каждого следующего деления шкалы фотографической широты зрительному ощущению равномерного падения яркости при геометрически увеличивающимся падении количества света.

Размер динамического диапазона или фотографической широты записываются цифрой, обозначающей количество делений по соответствующей шкале между измеренными точками. При этом, если измерения проходят по шкале динамического диапазона, рядом с цифрой ставят обозначение D (2D, 2,7D, 4D, 4,2D), а если по шкале фотографической широты, то используется обозначение EV (Exposure Value — значение экспозиции) или просто количество ступеней или стопов (делений).

Часто динамический диапазон записывают просто как отношение, например 100:1 (2D) или 1000:1 (3D).

Формула же для измерения полезного динамического диапазона следующая: динамический диапазон равен десятичному логарифму из отношения максимальной величины измеряемого параметра к минимальному, то есть уровню шума:

D = lg(Max/Min)

Формула вычисления фотошироты аналогична, но вместо десятичного логарифма применяется двоичный.

Динамический диапазон цифровых устройств измеряют ещё и в децибеллах. Способ измерения практически аналогичен вышеописанному, поскольку децибел - тоже логарифмическая величина, и тоже вычисляется через десятичный логарифм. Но значение в децибелах будет в 20 раз больше (1D = 20 дб), и сейчас я объясню, почему.

Измерению в этом случае подвергается разница напряжений, в которые преобразовываются накопленные в каждом пикселе матрицы электроны. Впрочем, это напряжение пропорционально количеству накопленных электронов, но я упомянул напряжение не случайно. Дело в том, что в децибелах измеряют диапазоны только энергетических величин : мощностей, энергий и интенсивностей. И способ их вычисления полностью аналогичен вышеописанному за исключением умножения итогового числа на 10, потому что мы мерием не белы а децибелы, которые в 10 раз меньше.

Однако существует возможность померить в децибелах и амплитудные величины , такие как напряжение, ток, импеданс, напряженности электрического или магнитного полей и размахи любых волновых процессов. Но для этого надо учесть зависимость от них соответствующей им энергетической величины.

Вычислим зависимость мощности от напряжения . Мощность равна квадрату напряжения делённого на сопротивление, то есть она зависит от напряжения квадратично . Увеличивая напряжение в 2 раза мощность увеличивается в 4 раза. Значит, чтобы сохранить мощностную пропорцию, придётся мерить диапазон не напряжений, а квадратов этих напряжений:

lg(U max 2 /U min 2) = lg(U max /U min) 2 = 2*lg(U max /U min)

Мы получим значение в белах. Для перевода в децибелы умножаем на 10. В итоге полная формула принимает вид:

Децибелы = 20*lg(U max /U min)

Таким образом, у нас получается, что динамический диапазон в децибелах равен подсчитанному нами по шкале динамическому диапазону, умноженному на коэффициент 20.


Иногда из-за путаницы в терминологии динамический диапазон измеряют в единицах экспозиции (EV), ступенях или стопах, как фотографическую широту, а фотографическую широту — как динамический диапазон. Чтобы привести параметры к нормальному виду, приходится пересчитывать диапазон из одной шкалы в другую. Для этого необходимо вычислить цену деления одной шкалы в цифрах другой. Например, цену деления шкалы фотографической широты в цифрах шкалы динамического диапазона.

Кроме того, принимая во внимание логарифмичность шкал и зная динамический диапазон фотоустройства, можно вычислить его фотографическую широту, и наоборот, по его фотографической широте можно узнать его динамический диапазон. Для этого нужно опять же просто пересчитать диапазон из одной шкалы в другую.

Поскольку деления шкалы представляют собой степени, вычислим, в какую степень надо возвести десятку (размерность шкалы динамического диапазона), чтобы получить двойку (размерность шкалы фотографической широты). Берём десятичный логарифм от двойки и получаем цену одного деления шкалы фотографической широты в единицах шкалы динамического диапазона — приблизительно 0,301. Это число и будет коэффициентом перевода. Теперь, для перевода EV в D, следует EV умножить на 0,3, а для перевода из D в EV, следует D разделить на 0,3.

Замечу, что шкала фотографической широты применяется не только для измерения диапазонов, но и для измерения конкретных величин экспозиции. Поэтому она имеет условный ноль, который соответствует яркости света, падающего от объекта, освещённость которого составляет 2,5 люкса (для нормальной экспозиции объекта с таким освещением требуется диафрагма 1.0 и выдержка 1 сек. при чувствительности ISO 100). Таким образом, экспозиция вполне может принимать по этой шкале отрицательные значения в EV. Диапазон же, естественно, всегда положителен.

Битовая глубина цифрового фотоустройства.


При упоминаниях о динамическом диапазоне фотоустройств иногда упоминается их битовая глубина. Давайте разберёмся, что это такое.

Между максимальным и минимальным значениями существует большое количество градаций, соответствующих разным яркостям, воспринятым пикселем. Для цифровой фиксации градаций в двоичном представлении требуется некоторое количество бит. Это количество бит и называется битовой глубиной АЦП (аналого-цифрового преобразователя фотоустройства, преобразующего количество возбуждённых электронов в пикселе в ту или иную цифру).

В современных сканерах на каждый из трёх цветов выделяют обычно по 16 бит. В цифровых фотоаппаратах это значение несколько меньше. Но даже там битовая глубина является избыточной, потому что основным ограничением является не разрядность АЦП, а динамический диапазон пикселей, которые пока неспособны накапливать большее количество электронов, или же иметь более низкий показатель случайного теплового шума, чтобы не глушить полезные электроны. В результате, младшие биты избыточной битовой глубины заняты в основном значениями случайного теплового шума.

Последнее время в интернете появляется все больше и больше оригинальных изображений, визуально весьма нетипичных - красочных, предельно детализированных, напоминающих то ли картины художников-реалистов, то ли качественные иллюстрации к рисованным мультфильмам. Аббревиатура HDR с момента появления на свет прочно вошла в обиход виртуальных завсегдатаев, получив в их жаргоне транслитерацию ХДР. Кто не знал ее смысла, вторил знатокам, старательно выписывая заглавные буквы, дабы не спутать ХДР с ГДР или, чего доброго, с КГБ. Ну а сами знатоки тем временем раскручивали это новое направление в фотографии вовсю, создавая блоги, дискутирую в форумах, а главное - размещаясь в интернет - галереях. Собственно то, что скрывалось за данной аббревиатурой, лучше всего делало рекламу само по себе. Одни называли гиперреальные изображения заразной болезнью, другие - свидетельством вырождения классической фотографии, третьи - прогрессивным выражением передовых тенденций в современном цифровом исскустве.

Споры продолжаются и по сей день, принимая еще более крайние формы. Правда, скептики успеха и аутентичности нового направления постепенно начинают принимать вещи такими, как есть. А HDR-апологеты называют в качестве гипотетических пропагандистов новой техники исполнения векиких экспериментаторов Мэна Рэя и Ласло Моголи-Надя, которые, будь они живы в наше время, обязательно пришли бы к чему-то подобному. Интересна точка зрения одного из известных HDR-фотографов, Джеспера Кристенсена: «Новые технические возможности современных визуальных медиасредств, в том числе и фотографии, неизменно влекут за собой попытки и поиски авторов в соответствующих их духу направлениях новых обликов художественного выражения. Более того, переплетения на техническом уровне порождают и смешения на уровне сюжетном, эстетическом. Гибридные образы, подобные HDR, - это уже даже не феномен нашего времени, а однозначно - доминирующая тенденция будущего». Но к морально-эстетическим аспектам темы мы, вероятно, еще вернемся в будущих
публикациях. А пока мы коснемся, прежде всего, теоретических основ и практической стороны получения HDR-изображений.

Проблема динамического диапазона

Без теории - никуда. Но мы постараемся изложить ее доступными формулировками. Итак, английский термин HDR содержит в себе качественное определение одного давно знакомого нам понятия - динамический диапазон (дословный перевод HDR - «высокий динамический диапазон»). Разложим его по частям, начав с ключевого определения - «высокий». Что же такое динамический диапазон? Наверняка наши постоянные читатели представляют его себе хотя бы в общих чертах. Сейчас пришло время углубиться в детали. Верно, ДД в фотографии характеризует соотношение между максимально и минимально измеримой интенсивностью света. Но в реальном мире не существует чисто белого или чисто черного цвета, а есть лишь различные уровни интенсивности источников света, варьирующиеся вплоть до бесконечно малых величин. Из-за этого теория ДД усложняется, а сам термин, помимо характеристики реального соотношения интенсивности освещения фотографируемого сюжета, может быть применен к описанию цветовых градаций, воспроизводимых устройствами фиксации визуальной информации - камерами, сканерами, или устройствами ее вывода - мониторами, принтерами.

Человек пришел в этот мир полностью самодостаточным, он - идеальный «продукт» эволюционного природного развития. Применительно к фотографии это выражается в следующем: глаз человека способен различать диапазон интенсивности света, находящийся в пределах от 10-6 до 108 кд/м2 (кандел на кв. метр; кандела - единица измерения световой интенсивности, равная силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540х1012 Гц, которая в свою очередь соответствует частоте зеленого цвета).

Интересно взглянуть на следующие величины: интенсивность чистого звездного сияния равна лишь 10-3 кд/м2, закатного/рассветного света - 10 кд/м2, а освещенной прямым дневным светом сцены - 105 кд/м2. Яркость солнца приближается к миллиарду кандел на кв. метр. Таким образом, очевидно, что способности нашего зрения попросту феноменальны, особенно если противопоставить им возможности придуманных нами устройств вывода информации, например ЭЛТ-мониторов. Ведь они могут корректно передавать изображения с интенсивностью всего от 20 до 40 кд/м2. Но это так, для общей информации - для разминки и сравнения. Однако вернемся к динамическому диапазону, который касается нас, цифровых фотографов, в наибольшей мере. Его широта напрямую зависит от размеров ячеек сенсоров камер.

Чем они больше, тем шире ДД. В цифровой фотографии для описания его величины придуманы f-стопы (часто обозначаются как EV), каждый из которых соответствует изменению интенсивности света в два раза. Тогда, например, сюжет с разбросом уровня контрастности 1:1024 будет содержать 10 f-стопов динамического диапазона (210-1024). Зеркальная цифровая камера воспроизводит ДД, равный 8-9 f-стопов, плазменные ТВ-панели - до 11, а фотоотпечатки вмещают не больше 7 f-стопов. Тогда как соотношение максимальной и минимальной контрастности для вполне типичной сцены - яркий дневной свет за окном, плотная полутень в комнате - может достигать 1:100 000. Нетрудно подсчитать, что это будет соответствовать 16-17 f-стопам. Кстати, глаз человека одновременно воспринимает диапазон контрастности 1:10 000. Так как наше зрение фиксирует отдельно интенсивность освещения и его цвет, то одновременно доступная глазу гамма светов составляет 108 (10 000 оттенков яркости умножить на 10 000 оттенков цвета).

Проблемы битовой глубины

Обратите внимание - в нашу беседу закралось слово «цвет», присоединяясь к понятиям «интенсивность» и «контрастность». Посмотрим, чем оно является в контексте динамического диапазона. Переместимся на пиксельный уровень. Вообще-то говоря, каждый пиксель изображения имеет две основные световые характеристики - интенсивность и цвет. Это понятно. Как измерить количество уникальных цветов, составляющих колористическую гамму снимка? С помощью битовой глубины - числа нулей и единиц, битов, используемых для обозначения каждого из цветов. Применительно к ч/б изображению битовая глубина определяет количество оттенков серого. Картинки с большей битовой глубиной могут охватывать более значительное количество оттенков и цветов, поскольку содержат больше комбинаций нулей и единиц. Каждый цветной пиксель в цифровом изображении представляет собой определенную комбинацию трех цветов - красного, зеленого и синего, которые часто именуются цветовыми каналами. Диапазон их цветовой интенсивности указывается в битах на канал.

В то же время биты на пиксель (англ. сокращение - bpp) подразумевают общую сумму битов, имеющуюся в трех каналах и фактически представляют количество цветов в одном пикселе. Например, при записи цветовой информации в 8-битовых JPEG’ах (24 бита на пиксель) используется по восемь нулей и единиц для характеристики каждого из трех каналов. Интенсивность синего, зеленого и красного цветов обозначается 256 оттенками (градациями интенсивности). Число 256 удачно кодируется в двоичной системе и равняется 2:8. Если скомбинировать все три цвета, то один пиксель 8-битового изображения можно будет описывать 16 777 216 оттенками (256?256?256, или 224). Исследователи выяснили, что 16,7 млн оттенков вполне достаточно для передачи изображений фотографического качества. Отсюда и знакомый нам «true color». Будет ли изображение считаться имеющим более широкий ДД или нет, по большому счету зависит от его количества битов на цветовой канал. 8-битовые снимки считаются изображениями LDR (low dynamic range - узкий динамический диапазон). 16-битовые картинки, получаемые после конвертации RAW, также относят к категории LDR. Хотя их теоретический ДД мог бы равняться 1:65 000 (216). На самом деле, производимые большинством камер RAW-изображения имеют ДД не больше, чем 1:1000. К тому же при конвертации RAW используется одна стандартная тональная кривая, независимо от того, конвертируем мы файлы в 8- или 16-битные изображения. А поэтому, работая с 16 битами, вы получите больше четкости в определении оттенков/градаций и интенсивности, однако не получите ни «грамма» дополнительного ДД. Для этого вам понадобятся уже 32-битные изображения - 96 бит на пиксель! Их мы и будем называть High Dynamic Range Images - HDR(I).

Решение всех проблем

Снимки с расширенным динамическим диапазоном… Давайте еще раз нырнем в теорию битов. Всем знакомая модель RGB до сих пор является универсальной моделью описания изображений. Цветовая информация по индивидуальным пикселям кодируется в виде комбинации трех цифр, соответствующих уровням интенсивности оттенков. Для 8-битных изображений она будет находиться в пределах от 0 до 255, для 16-битных - от 0 до 65 535. Согласно модели RGB, черный цвет представляется как «0,0,0», то есть полное отсутствие интенсивности, а белый - как «255, 255, 255», то есть цвет с максимальной интенсивностью трех основных цветов. В кодировке допускается использование только целых чисел. Тогда как применение вещественных чисел - 5,6 или 7,4, да и любых дробных чисел с плавающей запятой, в рамках RGB-модели попросту недопустимо. Вот на таком противоречии и зиждется изобретение одного из американских компьютерных гениев Пола Дебевеца. В 1997 г. на ежегодной конференции специалистов в области компьютерной графики SIGGRAPH Пол изложил ключевые моменты своей новой научной работы, касающейся способов извлечения карт расширенного динамического диапазона из фотоснимков и их интеграции в визуализированные сцены с помощью нового графического пакета Radiance. Тогда-то впервые Пол и предложил съемку одного сюжета множество раз с изменяющимися значениями экспозиции и последующим объединением снимков в одно HDR-изображение. Грубо говоря, информация, которую содержат такие изображения, соответствует физическим величинам интенсивности и цвета. В отличие от традиционных цифровых изображений, состоящих из цветов, понимаемых устройствами вывода - мониторами, принтерами.

Указание величин освещенности вещественными числами теоретически снимает любые ограничения на вывод динамического диапазона. Скептики могут спросить, например, почему бы просто не добавлять все больше битов, охватывая ими самый экстремальный разброс световой и тональной контрастности? Дело в том, что в снимках с узким ДД для представления светлых тонов используется значительно большее количество битов, чем для темных. Поэтому по мере добавления битов пропорционально будет увеличиваться и часть тех из них, которые идут на более точное описание вышеуказанных тонов. А эффективный ДД практически останется неизменным. И напротив, числа с плавающей запятой, являясь линейными величинами, всегда пропорциональны фактическим уровням яркости. За счет этого биты равномерно распределяются по всему ДД, а не только концентрируются в области светлых тонов. Вдобавок такие числа фиксируют значения тонов с постоянной относительной точностью, ведь мантисса (цифровая часть), скажем, у 3,589?103 и 7,655?109, представлена четырьмя цифрами, хотя второе и больше первого в два миллиона раз.

Экстрабиты HDR-изображений позволяют передавать бесконечно широкий диапазон яркостей. Все могли бы испортить мониторы и принтеры, не признающие нового языка HDR, - у них своя фиксированная шкала яркостей. Но умные люди придумали такой процесс, как «tone mapping» - тональное сопоставление или отображение (дословно - создание карты), когда происходит перевод 32-битного HDR-файла в 8- или 16-битный, подогнанный под более ограниченный ДД устройств отображения. По сути, идея tone mapping базируется на решении проблемы потери деталей и тональностей в областях максимальной контрастности, их расширении с целью передачи всеобъемлющей цветовой информации, заложенной в 32-битном цифровом изображении.

С чего начинается удачный HDR

О тональных сопоставлениях очень хорошо знает один из наших четырех сегодняшних героев - итальянец Джанлука Несполи. Он, пожалуй, наиболее технически подкован. Помимо Photoshop, он с энтузиазмом экспериментирует с другими профессиональными графическими пакетами, в том числе и такими, которые были специально созданы для оптимизации HDR-результатов. Прежде всего, это Photomatix. Программа, соединяя несколько снимков с различной экспозицией, создает 32-битный файл с расширенным ДД, а затем подвергает его «тоун маппингу», применяя один из двух алгоритмов, называемых также операторами: глобальным или локальным. Процесс сопоставления по схеме глобального оператора сводится к обобщению интенсивностей пикселей вместе с тональными и прочими характеристиками изображения. В работе локального оператора, помимо этого, учитывается также и расположение каждого пикселя по отношению к остальным. В принципе, функция генерирования HDR-изображений вместе с сопутствующим «тоун маппингом» реализована и в Photoshop CS2. Ее вполне достаточно для заданий, которые реализуют датчанин Кристенсен и молодая фотохудожница из Санкт-Петербурга Микаэлла Райнрис. Наш четвертый герой - Густаво Оренштайн - по-прежнему не решил, какому из рабочих инструментов отдать предпочтение, а потому склонен к экспериментам с новыми программными HDR-ресурсами.

Чуть ниже мы рассмотрим практические нюансы работы с каждой из двух основных программ, обобщив рекомендации, полученные от этих фотоиллюстраторов новой волны. А пока прикинем, какой исходный материал необходим для получения изображений с расширенным ДД. Очевидно, что без нескольких снимков с различными значениями экспозиции не обойтись. Достаточно ли будет одного «сырого» RAW? Не совсем. Общий ДД, полученный после конвертации одного даже самого большого RAW-изображения с различными значениями уровня экспозиции, не может быть шире того динамического диапазона, который воспроизвела ваша камера. Это все равно, что разрезать ДД снимка в режиме RAW на несколько частей.

«Сырые» файлы кодируются 12 битами на канал, соответствующими разбросу контрастностей 1:4096. И только из-за неудобства 12-битной кодировки получаемым из RAW изображениям в формате TIFF присуждается 16 бит на канал. Одним RAW еще можно как-то обойтись, если речь не идет о высококонтрастной сцене. Съемка же нескольких кадров, предназначенных для дальнейшего объединения в одно целое, требует соблюдения определенных процедур настройки параметров отработки экспозиции, да и физического монтажа самой камеры. В принципе, и Photoshop, и Photomatix корректируют незначительные нестыковки при накладывании пиксельных массивов друг на друга, возникающие на снимках из экспозиционной серии вследствие отсутствия должной фиксации камеры. К тому же зачастую очень короткие выдержки и хорошая скорость съемки аппарата в режиме автоматического брекетинга (что особенно важно, если объект в кадре перемещается) позволяют компенсировать возможные перспективные искажения. Но все же крайне желательно свести их на нет, а для этого камере потребуется надежная опора в виде хорошего штатива.

Джеспер Кристенсен повсюду носит сверхлегкий карбоновый штатив Gitzo. Иногда для большей устойчивости подвешивает к его центральной колонне сумку, не прикасается к кнопке спуска затвора, используя пульт ДУ или таймер автоспуска, и блокирует зеркало своей Canon 20D. В настройках камеры главным, помимо сохранения постоянной диафрагмы для всех снимков, которые составят будущее HDR-изображение, является определение их количества и диапазона отработки экспозиции. Сначала, с помощью точечного замера камеры, если, конечно, таковой имеется, произведите считывание уровня освещенности самой темной и самой светлой областей сцены. Вот этот спектр ДД вам и необходимо записать с помощью нескольких экспозиций. Задайте минимальное значение светочувствительности ISO. Любые шумы в процессе «тоун маппинга» будут подчеркнуты еще больше. Про диафрагму мы уже сказали. Чем контрастнее сюжет, тем меньше должен быть экспозиционный интервал между снимками. Иногда может понадобиться до 10 кадров с интервалом 1 EV (каждая экспозиционная единица соответствует изменению уровня освещения в два раза). Но, как правило, достаточно 3-5 кадров RAW, отличающихся между собой двумя стопами освещенности. Большинство камер среднего уровня позволяют проводить съемку в режиме брекетинга экспозиции, вмещая в диапазон +/-2 EV три кадра. Функцию автоматического брекетинга легко обмануть, заставив снимать в диапазоне, который в два раза шире. Делается это так: выбираете подходящую центральную экспозицию, и прежде чем выстрелить три положенных кадра, задаете значение компенсации экспозиции -2 EV. После их отработки быстренько перемещаете ползунок компенсации к отметке +2 EV и выстреливаете еще одну очередь из трех кадров. Таким образом, после удаления продублированной центральной экспозиции у вас на руках останется пять кадров, покрывающих участок от +4 EV до -4 EV. ДД такой сцены будет приближаться к отметке 1:100 000.

с Photoshop в мир HDR

Доступный всем Photoshop делает доступными и изображения с расширенным динамическим диапазоном. В меню «Инструменты» находится команда Merge to HDR. Именно с нее и начинается путь к презентабельному HDR-изображению. Сначала все ваши объединенные экспозиции предстанут в виде одного снимка в окошке превью - это уже 32-битная картинка, однако монитор пока не в состоянии отобразить всех ее преимуществ. Помните, «глупый» монитор является всего лишь 8-битным устройством вывода. Ему, как нерадивому школьнику, нужно все разложить по полочкам. Но гистограмма в правом углу окошка уже многообещающе растянулась, став похожей на горную вершину, что говорит обо всем потенциале ДД, содержащемся в только что созданном изображении. Ползунок в нижней части гистограммы позволяет увидеть детали в том или ином тональном диапазоне. На данной стадии ни в коем случае не следует задавать битовую глубину меньше 32. Иначе программа сразу же обрежет тени и света, ради которых, собственно, весь этот сыр-бор.

Получив от вас добро на создание очередного HDR-чуда, Photoshop сгенерирует изображение, открыв его в основном рабочем окне программы. Скорость реагирования ее алгоритмов будет зависеть от мощности вашего процессора и объема оперативной памяти компьютера. Однако при всех ужасающих перспективах получить на выходе что-то очень массивное, многомегабайтное 32-битный HDR (при условии, что он собран, например, из трех снимков) будет «весить» только около 18 Мб, в противоположность одному 30-Мб стандартному TIFF’у.

Фактически, до этого момента наши действия были лишь частью подготовительного этапа. Теперь пришло время инициировать процесс соотнесения динамических диапазонов полученного HDR-изображения и монитора. 16 бит на канал в меню Mode - наш следующий шаг. Photoshop осуществляет «тоун маппинг», используя четыре различных метода. Три из них - экспозиция и гамма, сжатие светов и выравнивание гистограммы - утилизируют менее изощренные глобальные операторы и позволяют настраивать вручную только яркость и контрастность снимка с расширенным ДД, сужают ДД, пытаясь сохранить контраст, или же урезают света так, чтобы они вошли в диапазон яркостей 16-битного изображения.

Наибольший интерес представляет четвертый способ - локальная адаптация. Микаэлла Райнрис и Джеспер Кристенсен работают именно с ним. Поэтому о нем немного подробнее. Основной инструмент здесь - тональная кривая и гистограмма яркостей. Смещая кривую, разбитую якорными точками, вы сможете перераспределить уровни контрастности по всему ДД. Вероятно, понадобится обозначить несколько тональных областей вместо традиционного разделения на тени, средние тона, света. Принцип настройки данной кривой абсолютно идентичен тому, на котором зиждется фотошоповский инструмент Curves. А вот функции ползунков Radius и Threshold в данном контексте весьма специфические. Они контролируют уровень изменения локального контраста - то есть улучшают детализацию в масштабе небольших областей снимка. Тогда как кривая, напротив, корректирует параметры ДД на уровне всего изображения. Радиус указывает количество пикселей, которые оператор «тоун маппинга» будет считать локальными. Например, радиус в 16 пикселей означает, что области подгонки контрастности будут очень плотными. Тональные сдвиги примут явно заметный, слишком обработанный характер, HDR-изображение хотя и расцветет богатством деталей, но предстанет абсолютно неестественным, лишенным и намека на фотографию. Большой радиус тоже не выход - картинка получится более натуральной, но скучноватой в плане деталей, лишенной жизни. Второй параметр - порог - устанавливает предел разницы яркостей соседних пикселей, который позволит включить их в одну и ту же локальную область регулировки контрастности. Оптимальный диапазон значения порога - 0,5-1. После освоения вышеуказанных компонентов процесс «тоун маппинга» можно считать благополучно завершенным.

С Photomatix в мир HDR

Специально для всех нуждающихся в фотоснимках с очень широким ДД в 2003 г. французы придумали программку Photomatix, последняя версия которой сегодня доступна для бесплатного скачивания (полностью функциональна, только оставляет на снимке свой «водяной знак»). Многие любители HDR-затравки считают ее более расторопной, когда дело касается подгонки тональностей и интенсивностей 32-битного изображения с урезанными параметрами битовой глубины устройств вывода. К ним принадлежит и итальянец Джанлука Несполи. Приведем его слова: «HDR-картинки, генерированные этой программой, отличает лучшая проработка деталей неба и деревьев, они не выглядят слишком “пластмассовыми”, демонстрируют более высокий уровень контрастности и цветовой тональности. Единственный минус Photomatix - усиление вместе со всеми достоинствами и некоторых недостатков изображения, таких как шумы и артефакты JPEG-компрессии». Правда, компания-разработчик MultimediaPhoto SARL обещает устранить и эти нюансы, а кроме того, c теми же шумами, например,
неплохо справляются программы вроде Neat Image.

Помимо возможности осуществлять «тоун маппинг», Photomatix располагает несколькими дополнительными настройками уровня экспозиции, а ее алгоритм соотнесения тональностей можно применять даже к 16-битным TIFF’ам. Так же, как и в Photoshop, сначала на основе отдельных снимков с варьирующей экспозицией необходимо создать 32-битное HDR-соединение. Для этого у программы есть опция Generate HDR. Подтвердите значения экспозиционного интервала, выберите стандартную тональную кривую (рекомендовано) - и Photomatix готов будет представить вам свою версию HDR-изображения. Файл будет «весить» примерно столько же, сколько и фотошоповская версия, и иметь то же расширение - .hdr или.exr, - под которым его можно сохранить до начала процесса «тоун маппинга». Последний инициируется путем выбора соответствующей команды в главном меню HDRI программы. В его рабочем окошке вмещается много различных настроек, способных привести в замешательство. На самом деле, ничего сложного здесь нет. Гистограмма показывает распределение яркостей пропущенного через «тоун маппинг» снимка. Ползунок Strength определяет уровень локального контраста; параметры Luminosity и Color Saturation отвечают соответственно за яркость и цветовую насыщенность. Точки отсечения светлой и темной областей гистограммы вполне можно оставить по умолчанию. Photomatix предлагает всего четыре установки функции сглаживания контрастности в противоположность более точным настройкам Photoshop в пределах от 1 до 250. По правде говоря, такой уровень контроля не всегда желателен. Вряд ли непрофессионалу важна та разница, которая будет присутствовать между значениями радиуса сглаживания, скажем, 70, 71 и 72. Настройка микроконтраста обращается к локальному уровню, однако в случае использования изначально шумных или насыщенных всякого рода артефактами снимков, ею не следует злоупотреблять.

Когда "тоун маппинг" примирит монитор с HDR-изображением...

…можно подключать предыдущие навыки по обращению с Photoshop и редактировать HDR-изображение на свой вкус, страх и риск. Помните, пока что отношение фотопублики к продуктам искусственно созданной широкодиапазонной природы неоднозначное. «Если хотите иметь успех на этой ниве, постарайтесь выработать свой оригинальный стиль, а не упражняйтесь в повторении, - напутствует Микаэлла Райнрис. - В таком тонком и повсеместно копируемом на любительском уровне деле, как HDR, это особенно важно».

В постобработке, следующей за процессом «тоун маппинга», фотохудожница отдает предпочтение маскам слоев и размытиям на них (инструменты группы Blur, в частности - размытие по Гауссу). Из режимов наложения слоев Микаэлла любит Overlay и Color, позволяющие достигать требуемого уровня контрастности. Густаво Оренштайн и Джеспер Кристенсен добавляют сюда еще и Soft Overlay. Джеспер работает на таком слое кисточками инструментов «осветлитель» и «затемнитель». Первый помогает четче прорисовать детали в тенях, второй - создать драматическую контрастность. Без них в своей работе не обходится и Микаэлла, и Густаво. Тогда как Джанлука предпочитает затемнителю и осветлителю обычную рисовальную кисточку в режиме наложения слоев Overlay с минимальным уровнем прозрачности (opacity). Для придания изображениям должной цветовой насыщенности он работает с настройками hue/saturation и selective color. Джанлука создает дубликат слоя; к нему он применяет фильтр «размытие по Гауссу» (радиус 4 пикселя, показатель прозрачности - 13 %) и накладывает в режиме multiply или overlay. Затем он вызывает еще один дубликат и занимается уровнями насыщенности отдельных цветов в нем, особенно - белого, черного и нейтрального серого, которые и создают дополнительное ощущение широкого динамического диапазона. Из четверых наших экспертов только Джеспер Кристенсен активно использует цифровые графические планшеты Wacom, но мог бы прекрасно обходиться и без них - устройства нужны ему для других проектов.

Вообще говоря, постобработка HDR-изображений - вопрос, конечно, сугубо личный, зависящий не столько от технических возможностей программы, сколько от субъективного творческого видения художника. И было бы бессмысленно рассказывать о сотнях индивидуальных предпочтений каждого из сегодняшних авторов. Кто-то, как Микаэлла, стремится к простоте в выборе инструментов реализации визуальных задач. Для нее, например, фотошоповский shadow/highlight дороже всех самых дорогих и изощренных плагинов. А кто-то, вроде маэстро Оренштайна, продолжает экспериментировать с Photomatix, HDR Shop, Light Gen и тому подобными расширителями ДД. Бывалым пользователям графических редакторов, вероятно, важнее сконцентрироваться не на освоении новых программных продуктов, а на выработке собственного стиля и воспитании в себе целостного творческого начала. Тогда как новичкам хотелось бы посоветовать не потеряться в технических моментах, а постараться начать с формирования высокого художественного видения и места работ этого изумительного и перспективного жанра фотоиллюстрации.

16 ноября 2009 года

Видеокамеры с широким динамическим диапазоном

Видеокамеры с широким динамическим диапазоном (WDR) предназначены для обеспечения качественного изображения при встречной засветке и наличии в кадре как очень ярких, так и очень темных областей и деталей. При этом яркие области не насыщаются, а темные не отображаются слишком темными. Такие камеры обычно рекомендуются для организации наблюдения за объектом, находящимся напротив окон, в освещенном сзади проеме двери или ворот, а также при большом контрасте объектов.

Динамический диапазон видеокамеры обычно определяется как отношение самого яркого фрагмента изображения к самому темному фрагменту того же самого изображения, то есть в пределах одного кадра. Это отношение по-другому называется максимальным контрастом изображения.

Проблема динамического диапазона

К сожалению, реальный динамический диапазон видеокамер строго ограничен. Он существенно у"же динамического диапазона большинства реальных объектов, ландшафтов и даже сцен кино и фотографии. Кроме того, условия применения видеокамер наблюдения в части освещения зачастую далеки от оптимальных. Так, интересующие нас объекты могут быть расположены на фоне ярко освещенных стен и предметов или встречного (контро-вого) света. В этом случае объекты или их детали на изображении будут слишком темными, так как видеокамера автоматически адаптируется к высокой средней яркости кадра. В некоторых ситуациях на наблюдаемой "картинке" могут иметь место яркие пятна со слишком большими градациями яркости, которые трудно передаются стандартными камерами. Например, обычная улица при солнечном освещении и с тенями от домов имеет контраст от 300:1 до 500:1, для темных пролетов арок или ворот с освещенным солнцем фоном контраст достигает 10 000:1, внутренность темной комнаты против окон имеет контраст до 100 000:1.

Ширина результирующего динамического диапазона ограничивается несколькими факторами: диапазонами самого датчика (фотоприемника), обрабатывающего процессора (DSP) и дисплея (видеоконтрольного устройства). Типовые CCD (ПЗС-матрицы) имеют максимальный контраст не более 1000:1 (60 дБ) по интенсивности. Самый темный сигнал ограничен тепловым шумом или "темновым током" датчика. Самый яркий сигнал ограничен суммой заряда, который может быть накоплен в отдельном пикселе. Обычно CCD построены так, что этот заряд составляет приблизительно 1000 темновых зарядов, обусловленных температурой CCD.

Динамический диапазон может быть существенно увеличен для специального применения камер, например для научных или астрономических исследований, путем охлаждения CCD и применения специальных систем считывания и обработки. Однако такие методы, будучи очень дорогими, не могут использоваться широко.

Как указывалось выше, множество задач требует размера динамического диапазона 65-75 дБ (1:1800-1:5600), поэтому при отображении сцены даже с диапазоном в 60 дБ детали в темных областях потеряются в шуме, а детали в ярких областях — из-за насыщения, либо диапазон будет обрезан сразу с двух сторон. Системы считывания, аналоговые усилители и аналого-цифровые преобразователи (АЦП) для видеосигнала в режиме реального времени ограничивают сигнал CCD до динамического диапазона в 8 бит (48 дБ). Такой диапазон может быть расширен до 10-14 бит за счет использования соответствующих АЦП и обработки аналогового сигнала. Однако зачастую это решение оказывается непрактичным.

Другой альтернативный тип схемы использует нелинейное преобразование в виде логарифмической функции или ее аппроксимации для сжатия 60 дБ выходного сигнала CCD до диапазона в 8 бит. Обычно такие методы подавляют детали изображения.

Последний (указанный выше) фактор ограничения — вывод картинки на дисплей. Динамический диапазон для нормального CRT-монитора, работающего в освещенной комнате, составляет около 100 (40 дБ). LCD-монитор еще более "ограничен". Сигнал, сформированный видеотрактом и даже ограниченный до контраста 1:200, будет уменьшен в динамическом диапазоне при показе. Чтобы оптимизировать показ, пользователь часто должен регулировать контраст и яркость монитора. И если он хочет получить изображение с максимальным контрастом, придется пожертвовать частью динамического диапазона.

Типовые решения

Имеются два основных технологических решения, которые используются, чтобы обеспечить видеокамеры расширенным динамическим диапазоном:

  • множественное отображение кадра — видеокамера захватывает несколько полных изображений или его отдельных областей. При этом каждая "картинка" отображает различную область динамического диапазона. После чего камера объединяет эти различные изображения, чтобы воспроизвести единое изображение с расширенным динамическим диапазоном (WDR);
  • использование нелинейных, обычно логарифмических, датчиков — в этом случае степень чувствительности при различных уровнях освещения различна, что позволяет обеспечить широкий динамический диапазон яркости изображения в одном кадре.

Применяются разные комбинации этих двух технологий, но наиболее распространенная — первая.

Для получения одного оптимального изображения из нескольких используется 2 метода:

  • параллельное отображение двумя или более датчиками изображения, сформированного общей оптической системой. В этом случае каждый датчик захватывает различную часть динамического диапазона сцены за счет различного времени экспонирования (накопления), различного оптического ослабления в индивидуальном оптическом тракте или за счет использования датчиков различной чувствительности;
  • последовательное отображение изображения единственным датчиком с различными временами экспонирования (накопления). В крайнем случае производится по крайней мере два отображения: одно с максимальным, а другое — с более коротким временем накопления.

Последовательное отображение, как наиболее простое решение, обычно используется в промышленности. Длительное накопление обеспечивает видимость наиболее темных частей объекта, однако самые яркие фрагменты могут не прорабатываться и даже приводить к насыщению фотоприемника. Картинка, получаемая с малым накоплением, адекватно отображает светлые фрагменты изображения, не прорабатывая темные области, находящиеся на уровне шума. Сигнальный процессор изображения камеры объединяет обе картинки, беря яркие части от "короткой", а темные части от "длительной" картинки. Алгоритм комбинации, позволяющий создавать гладкое изображение без шва, достаточно сложен, и мы не будем здесь его касаться.

Первыми представила концепцию объединения двух цифровых изображений, полученных при разном времени накопления, в единое изображение с широким динамическим диапазоном группа разработчиков во главе с профессором И.И. Зиви из компании "Tech-nion", Израиль. В 1988 г. концепция была запатентована ("Камера широкого динамического диапазона" Y.Y. Zeevi, R. Ginosar и O. Hilsenrath), а в 1993 г. ее применили при создании коммерческой медицинской видеокамеры.


Современные технические решения

В современных камерах для расширения динамического диапазона на основе получения двух изображений в основном применяются матрицы Sony двойного сканирования (Double Scan CCD) ICX 212 (NTSC), ICX213 (PAL) и специальные процессоры для обработки изображения, например SS-2WD или SS-3WD. Примечательно, что такие матрицы невозможно обнаружить в ассортименте SONY и не все производители указывают на их использование. На рис. 1 схематически представлен принцип двойного накопления. Время указано по формату NTSC.

Из диаграмм видно, что если типовая камера накапливает поле 1/60 с (PAL-1/50 с), то камера WDR составляет поле из двух изображений, полученных путем накопления, за 1/120 с (PAL-1/100 с) для мало освещенных деталей и за период от 1/120 до 1/4000 с для сильно освещенных деталей. На фото 1 представлены кадры с разным экспонированием и результат суммирования (обработки) режима WDR.

Эта технология позволяет "довести" динамический диапазон до 60-65 дБ. К сожалению, числовые значения WDR, как правило, приводятся только производителями верхней ценовой категории, остальные же ограничиваются информацией о наличии функции. Имеющаяся регулировка градуирована обычно в относительных единицах. На фото 2 представлен пример сравнительной отработки типовой и камерой WDR встречного света от стеклянной витрины и дверей. Встречаются модели телекамер, в документации на которые указано, что они работают в режиме WDR, но нет упоминания о требуемой специальной элементной базе. В этом случае, естественно, может возникать вопрос, является ли заявленный режим WDR таким, каким мы ожидаем? Вопрос справедлив, поскольку даже в сотовых телефонах уже применяется режим авторегулирования яркости изображения встроенного фотоаппарата, называемый WDR. С другой стороны, встречаются модели с заявленным режимом расширения динамического диапазона, названным как Easy Wide-D или EDR, которые работают с типовыми CCD. Если в данном случае указывается величина расширения, то она не превышает 20-26 дБ. Одним из способов расширения динамического диапазона является применяемая сейчас компанией Panasonic технология Super Dinamic III. Она также основана на двойном экспонировании кадра за 1/60 с (1/50С-PAL) и 1/8000 с (с последующим анализом гистограмм, разделением картинки на четыре варианта с различной гамма-коррекцией и их интеллектуальным суммированием в DSP). На рис. 2 представлена обобщенная структура этой технологии. Подобная система расширяет динамический диапазон до 128 раз (на 42 дБ).

Наиболее перспективной технологией расширения динамического диапазона телекамеры на сегодня является технология Digital Pixel System™ (DPS), разработанная в Стен-фордском университете в 1990-х гг. и запатентованная компанией PIXIM Inc. Основным нововведением для DPS является использование AЦП для переведения величины фотозаряда в ее цифровое значение непосредственно в каждом пикселе сенсора. CMOS(КМОП)-матрицы сенсора препятствуют ухудшению качества сигнала, что увеличивает общее отношение сигнал/шум. Технология DPS позволяет вести обработку сигнала в режиме реального времени.

Технология PIXIM использует метод, известный как мультисемплинг (многократная выборка), что позволяет сформировать изображение высочайшего качества и обеспечить широкий динамический диапазон преобразователя (свет/сигнал). В технологии PIXIM DPS используется пятиуровневый мультисемплинг, это позволяет получать сигнал от сенсора с одним из пяти значений экспозиции. Во время экспонирования производится измерение величины освещенности каждого пикселя кадра (для стандартного видеосигнала — 50 раз в секунду). Система обработки изображения определяет оптимальное время экспонирования и сохраняет полученное значение до того, как произойдет перенасыщение пикселя и прекратится дальнейшее накопление заряда. Рис. 3 поясняет принцип адаптивного накопления. Значение светлого пикселя сохранено при времени экспонирования Т3 (перед насыщением пикселя на 100%). Темный пиксель накапливал заряд более медленно, что требовало дополнительного времени, его значение сохранено при времени Т6. Сохраненные значения (интенсивность, время, уровень шума), измеренные в каждом пикселе, одновременно обрабатываются и преобразуются в высококачественное изображение. Поскольку у каждого пикселя есть свой встроенный АЦП и параметры освещенности измерены и обработаны независимо, то каждый пиксель в действительности действует как отдельная камера.


Системы формирования изображения PIXIM, основанные на технологии DPS, состоят из цифрового сенсора изображения и процессора обработки изображения. В современных цифровых сенсорах используется квантование в 14 и даже в 17 бит. Относительно невысокая чувствительность, как основной недостаток CMOS-технологии, характерна и для DPS. Типовая чувствительность камер этой технологии ~1 лк. Типовое значение отношения сигнал/шум для формата 1/3" составляет 48-50 дБ. Заявляемый максимальный динамический диапазон — до 120 дБ с типовым значением 90-95 дБ. Возможность регулирования времени накопления для каждого пикселя матрицы сенсора позволяет при формировании изображения использовать такой уникальный метод обработки сигнала, как метод выравнивания локальных гистограмм, позволяющий резко повысить информативность изображения. Технология позволяет полностью компенсировать засветку фона, выделить детали, оценить пространственное положение объектов и деталей, находящихся не только на переднем, но и на заднем плане изображения. На фото 3, 4 и 5 приведены кадры, полученные типовой CCD-камерой и камерой PIXIM.

Практика

Итак, можно сделать вывод о том, что сегодня при необходимости вести видеонаблюдение в сложных условиях высококонтрастного освещения можно подобрать телекамеру, достаточно адекватно передающую весь диапазон яркости объектов. Для этого наиболее предпочтительно использование видеокамер с технологией PIXIM. Довольно хорошие результаты обеспечивают системы на основе двойного сканирования. Как компромисс можно рассматривать дешевые телекамеры на основе типовых матриц и электронных систем EWD и многозонной BLC. Естественно, желательно использовать оборудование с оговоренными величинами характеристик, а не только с упоминанием наличия того или иного режима. К сожалению, на практике результаты работы конкретных моделей не всегда соответствуют ожиданиям и рекламным заявлениям. Но это тема для отдельного разговора.

Динамический диапазон -- это отношение максимального допустимого значения измеряемой величины (яркости по каждому из каналов) к минимальному значению (уровню шумов). В фотографии динамический диапазон принято измерять в единицах экспозиции (шаг, стоп, EV), т.е. логарифмом по основанию 2, реже - десятичным логарифмом (обозначается буквой D). 1EV = 0,3D. Изредка используют и линейное обозначение, например 1:1000, что равно 3D или почти 10EV.

Характеристика «динамический диапазон» также используется для форматов файлов , используемых для записи фотографий . В этом случае он назначается авторами конкретного формата файла, исходя из тех целей, для которых этот формат будет использоваться. Например, ДД

Термином «динамический диапазон» иногда неверно называют любое отношение яркостей в фотографии:

  • отношение яркостей самых светлых и тёмных объектов съемки
  • максимальное отношение яркостей белого и чёрного цветов на мониторе/фотобумаге (верный английский термин contrast ratio)
  • диапазон оптических плотностей плёнки
  • другие, ещё более экзотические варианты

Динамический диапазон современных цифровых фотоаппаратов на начало 2008 года составляет от 7-8 EV у компактных камер до 10-12 EV у цифровых зеркальных камер (см. тесты современных камер на http://dpreview.com). При этом необходимо помнить, что матрица передает объекты съёмки с разным качеством, детали в тенях искажаются шумами , в светах - передаются очень хорошо. Максимальный ДД зеркалок доступен только при съемке в RAW , при конвертации в JPEG камера обрезает детали, сокращая диапазон до 7,5-8,5EV (в зависимости от настроек контраста камеры).

Динамический диапазон файлов и матриц фотоаппаратов часто путают с количеством бит , используемых для записи информации, однако прямой связи между этими величинами нет. Поэтому, например, ДД Radiance HDR (32 бита на пиксель) больше, чем 16-битного RGB (фотоширота), показывающая тот диапазон яркостей, который пленка может передать без искажений, с равным контрастом (диапазон яркостей линейной части характеристической кривой плёнки). Полный ДД плёнки обычно несколько шире фотошироты и виден на графике характеристической кривой плёнки.

Фотоширота слайда составляет 5-6EV, профессионального негатива - около 9EV, любительского негатива - 10EV, киноплёнки - до 14EV.

Расширение динамического диапазона

Динамического диапазона современных камер и пленок недостаточно для того, чтобы передать любой сюжет окружающего мира. Особенно это заметно при съемке на слайд или компактную цифровую камеру, которые зачастую не могут передать даже яркий дневной пейзаж в средней полосе России , если там есть объекты в тени (а диапазон яркостей ночного сюжета с искусственным освещением и глубокими тенями может доходить до 20EV). Эта проблема решается двумя путями:

  • увеличение динамического диапазона камер (видеокамеры для систем наблюдения имеют заметно больший динамический диапазон, чем фотокамеры, однако это достигается путем ухудшения других характеристик камеры; каждый год выходят новые модели профессиональных камер с лучшими характеристиками, при этом их динамический диапазон медленно растет)
  • комбинирование изображений, снятых с разной экспозицией (технология HDR в фотографии), в результате которого возникает единое изображение, содержащее все детали из всех исходных изображений, как в крайних тенях, так и в максимальных светах.

Файл:HDRIexample.jpg

HDRi фотография и три снимка, из которых она собрана

Оба пути требуют решения двух проблем:

  • Выбор формата файла, в который можно записать изображение с расширенным диапазоном яркостей (обычные 8-битные sRGB файлы для этого не подходят). На сегодня самыми популярным форматами являются Radiance HDR, Open EXR, а так же Microsoft HD Photo , Adobe Photoshop PSD , RAW -файлы зеркальных цифровых камер с большим динамическим диапазоном.
  • Отображение фотографии с большим диапазоном яркостей на мониторах и фотобумаге , имеющих существенно меньший максимальный диапазон яркостей (contrast ratio). Данная проблема решается с помощью одного из двух методов:
    • тональная компрессия, при которой большой диапазон яркостей уменьшается в небольшой диапазон бумаги, монитора или 8-битного sRGB-файла путем уменьшения контраста всего изображения, единым образом для всех пикселей изображения;
    • тональное отображение (tone mapping, тонмаппинг), при котором производится нелинейное изменение яркостей пикселей, на разную величину для разных областей изображения, при этом сохраняется (или даже увеличивается) оригинальный контраст, однако тени могут выглядеть неестественно светлыми, и на фотографии могут появиться ореолы на границах областей с разным изменением яркости.

Тонмаппинг также может использоваться и для обработки изображений с небольшим диапазоном яркостей для повышения локального контраста.

Из-за способности тонмаппинга выдавать «фантастические» картинки в стиле компьютерных игр, и массового представления таких фотографий с вывеской «HDR» (даже полученных из одного изображения с небольшим диапазоном яркостей) у большинства профессиональных фотографов и опытных любителей выработалось стойкое отвращение к технологии расширения динамического диапазона из-за неверного мнения о том, что она нужна для получения таких картинок (приведенный выше пример показывает использование методов HDR для получения нормального реалистического изображения).

См. также

Ссылки

  • Определения основных понятий:
    • БСЭ, статья «фотографическая широта»
    • Горохов П. К. «Толковый словарь по радиоэлектронике. Основные термины» - М.: Рус. яз., 1993
  • Фотоширота пленок и ДД фотоаппаратов
    • http://www.kodak.com/global/en/professional/support/techPubs/e4035/e4035.jhtml?id=0.2.26.14.7.16.12.4&lc=en
  • Форматы файлов:

Wikimedia Foundation . 2010 .

Смотреть что такое "Динамический диапазон в фотографии" в других словарях:

    Динамический диапазон: Динамический диапазон (техника) характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового давления, представляющая логарифм… … Википедия

    Динамический диапазон характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового давления и т. д.), представляющая логарифм отношения максимального и… … Википедия

    У этого термина существуют и другие значения, см. Динамический диапазон. Динамический диапазон характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового… … Википедия

    Фотографическая широта характеристика светочувствительного материала (фотоплёнки, передающей телевизионной трубки, матрицы) в фотографии, телевидении и кино. Определяет способность светочувствительного материала правильно передавать яркость… … Википедия

    Контраст в наиболее общем смысле, любая значимая или заметная разница (например, «Россия страна контрастов…», «контраст впечатлений», «контраст вкуса пельменей и бульона вокруг них»), не обязательно измеряемая количественно. Контрастность степень … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное … Википедия

    У этого термина существуют и другие значения, см. HDR. High Dynamic Range Imaging, HDRI или просто HDR общее название технологий работы с изображениями и видео, диапазон яркости которых превышает возможности стандартных технологий. Чаще… … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

    В Википедии есть п … Википедия

    - (лат. redactus приведённый в порядок) изменение оригинала изображения классическими или цифровыми методами. Также может обозначаться термином ретуширование, ретушь (фр. retoucher подрисовывать, подправлять). Целью редактирования… … Википедия

by Cal Redback

Динамический диапазон является одним из многих параметров, на которые обращают внимание все, кто покупает или обсуждает фотокамеру. В различных обзорах часто используется этот термин наряду с параметрами шума и разрешения матрицы. Что же обозначает этот термин?

Не должно быть секретом, что динамический диапазон фотоаппарата - это способность камеры к распознаванию и одновременной передаче светлых и темных деталей снимаемой сцены.

Если говорить более детально, то динамический диапазон камеры - это охват тех тонов, которые она может распознать между черным и белым. Чем больше динамический диапазон, тем больше этих тонов могут быть записаны и тем больше деталей может быть извлечено из темных и светлых участков снимаемой сцены.

Динамический диапазон обычно измеряется в значениях . Хотя вроде бы и очевидно, что важным является возможность захватить наибольшее, насколько это возможно, число тонов, для большинства фотографов приоритетной остается цель - попытаться создать приятный образ. А это как раз не означает, что необходимо, чтобы была видна каждая деталь изображения. Например, если темные и светлые детали изображения будут разбавлены серыми полутонами, а не черными или белыми, то вся картинка будет иметь очень низкую контрастность и выглядеть довольно скучно и нудно. Ключевыми являются границы динамического диапазона фотокамеры и понимание как можно использовать его для создания фотографий с хорошим уровнем контрастности и без т.н. провалов в светах и тенях.

Что видит камера?

Каждый пиксель в изображении представляет один фотодиод на сенсоре камеры. Фотодиоды собирают фотоны света и превращают их в электрический заряд, который затем преобразуется в цифровые данные. Чем больше фотонов, которые собираются, тем больше электрический сигнал и тем ярче будет в изображении пиксель. Если фотодиод не собирает никаких фотонов света, то никакой электрический сигнал не будет создан и пиксель будет черным.

датчик 1 дюйм

датчик APS-C

Тем не менее, датчики бывают различных размеров и разрешений, а также при их производстве используются различные технологии, которые влияют на размер фотодиодов каждого датчика.

Если рассматривать фотодиоды как ячейки, то можно провести аналогию с наполнением. Пустой фотодиод будет воспроизводить черный пиксель, в то время как 50% от полного покажет серый цвет и заполненный на 100% будет белым.

Скажем, мобильные телефоны и компактные камеры имеют очень маленькие датчики изображения по сравнению с DSLR. Это означает, что они также имеют гораздо меньшие фотодиоды на датчике. Таким образом, даже при том, что и компактная камера, и DSLR может иметь датчик 16-миллионов пикселей, динамический диапазон будет отличаться.

Чем больше фотодиод, тем больше его способность хранить фотонов света по сравнению с меньшим размером фотодиода в меньшем датчике. Это означает, что чем больше физический размер, тем диод может лучше записывать данные в светлых и темных областях

Наиболее распространена аналогия, что каждый фотодиод похож на ведро, которое собирает свет. Представьте себе, что 16 миллионов ведер занимаются сбором света по сравнению с 16 млн. чашек. Ведра имеют больший объем, за счет которого способны собрать большее количество света. Чашки гораздо меньшей емкости, поэтому при наполнении могут передать фотодиоду гораздо меньший по мощности , соответственно пиксель может воспроизводиться с гораздо меньшим количеством световых фотонов, чем получается от более крупных фотодиодов.

Что это означает на практике? Камеры с меньшими размерами датчиков, такие как в смартфонах или потребительские компакты, имеют меньший динамический диапазон, чем даже самый компактный фотоаппарат из системных камер или зеркалок, которые используют большие датчики. Тем не менее, важно помнить, что влияет на ваши изображения общий уровень контраста в сцене, которую вы фотографируете.

В сцене с очень низкой контрастностью разница в тональном диапазоне, захваченном камерой мобильного телефона и DSLR, может быть мала или вообще не различима. Датчики обеих камер способны захватывать полный диапазон тонов сцены, если свет выставлен правильно. Зато при съемке высококонтрастных сцен будет очевидным, что, чем больше динамический диапазон, тем большее количество полутонов он способен передать. И так как более крупные фотодиоды имеют лучшую способность при записи более широкого диапазона тонов, следовательно, и имеют больший динамический диапазон.

Давайте посмотрим разницу на примере. На фотографиях ниже можно наблюдать отличия в передаче полутонов камерами с разным динамическим диапазоном при одинаковых условиях высокой контрастности освещения.

Что такое разрядность изображения?

Разрядность тесно связана с динамическим диапазоном и диктует камере какое количество тонов может быть воспроизведено в изображении. Хотя цифровые снимки полноцветные по умолчанию, и они не могут быть сняты не цветными, датчик камеры на самом деле не записывает непосредственно цвет, он просто записывает цифровое значение для количества света. Например, 1-битное изображение содержит самую простую "инструкцию" для каждого пикселя, поэтому в данном случае есть только два возможных конечных результата: черный или белый пиксель.

Битное изображение состоит уже из четырех различных уровней (2×2). Если оба бита равны - это белый пиксель, если оба выключены, то это черный. Есть также возможность иметь два варианта, что на изображении будет соответственное отражение еще двух тонов. Двухбитное изображение дает черно-белый цвет плюс два оттенка серого.

Если изображение 4-битное, соответственно существует 16 возможных комбинаций в получении различных результатов (2x2x2x2).

Когда дело доходит до обсуждения цифровых изображений и датчиков, чаще всего можно услышать о 12, 14 и 16-битных датчиках, каждый из которых способен записывать 4096, 16384 и 65536 различных тонов соответственно. Чем больше битовая глубина, тем большее количество значений яркости или тона может быть записано с помощью датчика.

Но и тут кроется подвох. Не все камеры способны воспроизводить файлы с такой глубиной цвета, которую может позволить создать датчик. Например, на некоторых камерах Nikon исходные файлы могут быть как 12 бит, так и 14 бит. Дополнительные данные в 14-битных изображениях означают, что в файлах, как правило, больше деталей в светлых и темных областях. Так как размер файла больше, то и времени на обработку и сохранение тратится больше. Сохранение необработанных изображений 12-битных файлов происходит быстрее, но тональный диапазон изображения из-за этого сжимается. Это означает, что некоторые очень темные серые пиксели будут отображаться как черные, а некоторые светлые тона могут выглядеть как .

Когда происходит съемка в формате JPEG, файлы сжимаются еще больше. Изображения JPEG являются 8-разрядными файлами, состоящими из 256 различных значений яркости, поэтому многие из мелких деталей, доступных для редактирования в исходных файлах, снятых в , полностью теряются в файле JPEG.

Таким образом, если у фотографа имеется возможность получить наиболее полную отдачу от всего возможного динамического диапазона фотокамеры, то лучше сохранять исходники в "сыром" виде - с максимально возможной битовой глубиной. Это означает, что снимки будут хранить наибольшее количество информации о светлых и темных областях, когда дело коснется редактирования.

Чем понимание динамического диапазона фотокамеры важно для фотографа? Исходя из имеющейся информации, можно сформулировать несколько прикладных правил, придерживаясь которых, повышается вероятность получения хороших и качественных изображений в трудных условиях для фотосъемки и избегать серьезных ошибок и недочетов.

  • Лучше снимок сделать более светлым, чем перетемнить его. Детали в светах "вытягиваются" проще, потому что они не такие шумные, как детали в тени. Безусловно, что правило действует при условиях более-менее правильно выставленной экспозиции.
  • При замере экспозиции по темным областям лучше жертвовать детализацией в тенях, более тщательно проработав света.
  • При большой разнице в яркости отдельных участках снимаемой композиции экспозицию следует замерять по темной части. При этом желательно выравнивать по возможности общую яркость поверхности изображения.
  • Оптимальное время для съемки считается утреннее или вечернее, когда свет распределяется равномерней, чем в полдень.
  • Портретная съемка пройдет лучше и легче, если использовать дополнительное освещение с помощью выносных вспышек для фотокамеры (например, купить современные накамерные вспышки http://photogora.ru/cameraflash/incameraflash).
  • При прочих равных следует пользоваться наименьшим из возможных значением ISO.