Из космоса в корабль его. Все в Космос! Обзор космических проектов из скорого будущего

В ноябре прошлого года во время TVIW (астрономического семинара в Теннесси, посвященного межзвездным перелетам) Роб Суинни – бывший командир эскадрильи Королевских Военно-воздушных сил, инженер и магистр наук, ответственный за проект «Икар» - представил доклад о работе, проделанной над проектом за последнее время. Суинни освежил в памяти публики историю «Икара»: от вдохновения идеями проекта «Дедал», освещенными в докладе BIS (Британское межпланетное общество – старейшая организация, поддерживающая космические исследования) в 1978, до совместного решения БИС и компании энтузиастов Tau Zero возобновить исследования в 2009 году, и до последних известий о проекте, датированных 2014 годом.

Оригинальный проект 78-го года имел простую по формулировке, но сложную в осуществлении цель – ответить на вопрос, поставленный Энрике Ферми: «Если существует разумная жизнь за пределами Земли, и межзвездные перелеты возможны, то почему нет доказательств наличия других инопланетных цивилизаций?». Исследования «Дедала» были направлены на разработку дизайна межзвездного космического корабля с использованием существующих технологий в разумных экстраполяциях. И результаты работы прогремели на весь научный мир: создание такого корабля действительно возможно. Доклад о проекте был подкреплен детальным планом корабля, использующего термоядерный синтез дейтерия-гелия-3 из предварительно заготовленных гранул. «Дедал» затем служил ориентиром для всех последующих разработок в сфере межзвездных перелетов в течение 30 лет.

Однако после такого долгого срока было необходимо пересмотреть идеи и технические решения, принятые в «Дедале», чтобы оценить, насколько они выдержали проверку временем. Кроме того, за этот период совершались новые открытия, изменение конструкции в соответствии с ними улучшило бы общие показатели корабля. Также организаторы хотели заинтересовать подрастающее поколение астрономией и строительством межзвездных космических станций. Новый проект был назван в честь Икара, сына Дедала, что, не смотря на негативный оттенок имени, соответствовало первым словам в отчете 78-го года:

«Мы надеемся, что этот вариант заменит собой будущий дизайн, аналог Икара, в котором найдут отображения последние открытия и технические инновации, чтобы Икар смог достичь еще непокоренных Дедалом высот. Надеемся, благодаря развитию наших идей настанет день, когда человечество буквально прикоснется к звездам».

Итак, «Икар» создан именно как продолжение «Дедала». Показатели старого проекта и по сей день выглядят весьма многообещающе, но все же должны быть доработаны и обновлены:

1) В «Дедале» использовались релятивистские пучки электронов для компрессии гранул топлива, но последующие исследования показали, что этот метод не способен дать необходимый импульс. Вместо него в лабораториях для термоядерного синтеза используют пучки ионов. Тем не менее, такой просчет, стоивший Национальному комплексу термоядерных реакций 20 лет работы и 4 миллиардов долларов, показал сложность обращения с термоядерным синтезом даже в идеальных условиях.

2) Главным препятствием, с которым столкнулся «Дедал» - Гелий-3. Его нет на Земле, и поэтому добывать его нужно из отдаленных от нашей планеты газовых гигантов. Этот процесс слишком дорогостоящий и сложный.

3) Еще одна проблема, которую придется решить «Икару» - брак информации об ядерных реакциях. Именно недостаток сведений дал возможность 30 лет назад сделать весьма оптимистичные расчеты воздействия облучения всего корабля гамма-лучами и нейтронами, без выброса которых не обойтись двигателю на термоядерном синтезе.

4) Тритий был использован в гранулах топлива для зажигания, но тепла от распада его атомов выделялось слишком много. Без должной системы охлаждения зажигание топлива будет сопровождаться зажиганием всего остального.

5) Декомпрессия баков с топливом вследствие опорожнения может стать причиной взрыва в камере сгорания. Для решения этой проблемы в конструкцию бака добавлены утяжелители, уравновешивающие давление в разных частях механизма.

6) Последняя сложность – обслуживание судна. По проекту, корабль оснащен парой роботов, похожих на R2D2, которые при помощи диагностических алгоритмов будут выявлять и устранять возможные повреждения. Такие технологии кажутся очень сложными даже сейчас, в компьютерную эру, что уж говорить о 70-х.

Новая команда дизайнеров уже не ограничена созданием маневренного корабля. Для исследования объектов «Икар» использует зонды, перевозимые на борту судна. Это не только упрощает задачу дизайнеров, но и значительно уменьшает время на изучение звездных систем. Вместо дейтерия-гелия-3, новый космический корабль работает на чистом дейтерий-дейтерие. Не смотря на больший выброс нейтронов, новое топливо не только увеличит КПД двигателей, но и избавит от необходимости добывать ресурсы с поверхности других планет. Дейтерий активно добывается из океанов и используется в АЭС, работающих на тяжелой воде.

Тем не менее, человечеству до сих пор не удалось получить контролируемую реакцию распада с выделением энергии. Затянувшаяся гонка лабораторий всего мира за экзотермическим ядерным синтезом тормозит проектирование корабля. Так что вопрос об оптимальном топливе для межзвездного судна остается открытым. В попытке найти решение в 2013 году был проведен внутренний конкурс среди подразделений БИС. Выиграла команда WWAR Ghost из Мюнхенского университета. Их дизайн основан на термоядерном синтезе при помощи лазера, который обеспечивает быстрое нагревание топлива до необходимой температуры.

Не смотря на оригинальность идеи и некоторых инженерных ходов, конкурсанты не смогли решить главную дилемму – выбор топлива. К тому же корабль-победитель огромен. Он превосходит по размерам «Дедала» в 4-5 раз, а другие методы термоядерного синтеза могут нуждаться в меньшем пространстве.

Соответственно, было принято решение продвигать 2 типа двигателей: основанный на термоядерном синтезе и базирующийся на пинче Беннета (плазменный двигатель). Кроме того, параллельно дейтерий-дейтерию рассматривают и старую версию с тритием-гелием-3. Фактически гелий-3 дает лучшие результаты в любом виде двигателей, так что ученые работают над способами его получения.

В работах всех участников конкурса прослеживается интересная зависимость: некоторые элементы конструкции (зонды для исследования окружающей среды, хранилища топлива, системы вторичного электропитания и прочие) любого корабля остаются неизменными. Однозначно можно утверждать следующее:

  1. Корабль будет горячим. Любой способ сжигания любого из представленных видов топлива сопровождается выбросом большого количества тепла. Дейтерий требует наличия массивной системы охлаждения из-за непосредственного выделения тепловой энергии во время реакции. Магнитно-плазменный двигатель будет создавать вихревые токи в окружающих металлах, также нагревая их. На Земле уже существуют радиаторы достаточной мощности, чтобы эффективно охлаждать тела температурой более 1000 C, осталось адаптировать их для нужд и условий звездолета.
  2. Судно будет колоссальных размеров. Одной из главных задач, поставленных перед проектом «Икар», было уменьшение габаритов, но со временем стало понятно, что для термоядерных реакций требуется много пространства. Даже варианты дизайна с самой маленькой массой весят десятки тысяч тонн.
  3. Корабль будет длинным. «Дедал» был весьма компактен, каждая его часть совмещалась с другой, как матрешка. В «Икаре» попытки минимизировать радиоактивное воздействие на судно привели к его удлинению (это хорошо продемонстрировано в проекте «Светлячок» за авторством Роберта Фриленда).

Роб Суинни сообщил, что к проекту «Икар» присоединилась группа из Университета Дрексела. «Новички» продвигают идею использования PJMIF (системы, основанной на струйной подаче плазмы при помощи магнитов, при этом плазма расслаивается, обеспечивая условия для ядерных реакций). Этот принцип на данный момент самый эффективный. По сути, это симбиоз двух методов ядерных реакций, он вобрал в себя все плюсы инерциального и магнитного термоядерного синтеза, такие как уменьшение массы конструкции, и значительное уменьшение стоимости. Их проект называется «Зевс».

После этой встречи состоялся TVIW, на котором Суинни обозначил предварительную дату завершения проекта «Икар» – август 2015 года. Последний доклад будет включать в себя упоминания о модификациях старых наработок «Дедала» и нововведениях, полностью созданных новой командой. Завершил семинар монолог Роба Суинни, в котором он сказал: «Загадки Вселенной ждут нас где-то там! Время выбираться отсюда!»

Человечество осваивает космическое пространство пилотируемыми кораблями уже более полувека. Увы, за это время оно, образно говоря, недалеко уплыло. Если сравнить Вселенную с океаном, мы всего лишь бродим у кромки прибоя по щиколотку в воде. Однажды, правда, решились поплавать немного поглубже (лунная программа "Аполлон"), и с тех пор живем воспоминаниями об этом событии как о высочайшем достижении.

До сих пор космические корабли в основном служат транспортом доставки на и обратно на Землю. Максимальная продолжительность автономного полета, достижимая многоразовым челноком "Спейс Шаттл", составляет всего лишь 30 дней, да и то теоретически. Но, быть может, космические корабли будущего станут гораздо совершеннее и универсальнее?

Уже лунные экспедиции "Аполлонов" наглядно показали, что требования к грядущим космолетам могут разительно отличаться от заданий для "космических такси". Лунная кабина "Аполлона" имела очень мало общего с обтекаемыми кораблями и не была рассчитана на полет в планетной атмосфере. Некоторое представление о том, как будут выглядеть космические корабли будущего, фото американских астронавтов дают более чем наглядно.

Самый серьезный фактор, который сдерживает эпизодическое исследование человеком Солнечной системы, не говоря уже об организации на планетах и их спутниках научных баз, - радиация. Проблемы возникают даже с лунными миссиями, длящимися от силы неделю. А полуторагодовой полет на Марс, который, казалось, вот-вот состоится, отодвигается все дальше и дальше. Исследования автоматами показали смертельно опасный для человека на всей трассе межпланетного перелета. Так что космические корабли будущего неизбежно обзаведутся серьезной противорадиационной защитой в сочетании со специальными медико-биологическими мерами для экипажа.

Понятно, что чем быстрее он доберется до места назначения, тем лучше. Но для быстрого полета нужны мощные двигатели. А для них, в свою очередь, высокоэффективное топливо, которое не занимало бы много места. Поэтому химические маршевые двигатели уже в ближайшем будущем уступят место ядерным. Если же ученым удастся укрощение антивещества, т. е. перевод массы в световое излучение, космические корабли будущего обретут В этом случае речь пойдет уже о достижении релятивистских скоростей и межзвездных экспедициях.

Еще одним серьезным препятствием на пути освоения человеком Вселенной станет длительное обеспечение его жизнедеятельности. Всего лишь за сутки человеческий организм потребляет немало кислорода, воды и пищи, выделяет твердые и жидкие отходы, выдыхает углекислый газ. Брать с собой на борт полный запас кислорода и продуктов бессмысленно из-за их огромного веса. Проблему решает бортовая замкнутая Однако до сих пор все эксперименты на эту тему не увенчались успехом. А без замкнутой СЖО немыслимы годами летящие сквозь пространство космические корабли будущего; картинки художников, конечно, поражают воображение, но не отражают реальное положение дел.

Итак, все проекты космолетов и звездолетов пока еще далеки от реального воплощения. И человечеству придется смириться с изучением Вселенной космонавтами под прикрытием и получением информации от автоматических зондов. Но это, конечно же, временно. Космонавтика не стоит на месте, и косвенные признаки показывают, что в этой сфере деятельности человечества зреет большой прорыв. Так что, возможно, космические корабли будущего будут построены и совершат первые полеты уже в XXI веке.


После полета Гагарина люди всерьез думали, что всего через несколько десятилетий Человечество покорит космическое пространство, колонизирует Луну, Марс и, возможно, более отдаленные планеты. Однако прогнозы эти были излишне оптимистичными. Но сейчас сразу несколько государств и частных компаний всерьез работают над тем, чтобы оживить утратившую накал космическую гонку. В нашем сегодняшнем обзоре мы вам расскажет про несколько самых амбициозных подобных проектов современности.



Американский мультимиллионер Деннис Тито, ставший в свое время, первым космическим туристом, создал программу Inspiration Mars, целью которой является запуск частной миссии на Марс в 2018 году. Почему именно в 2018? Дело в том, что при старте корабля 5 января этого года, появляется уникальная возможность осуществить полет по минимальной траектории. В следующий раз такой шанс выпадет лишь через тринадцать лет.




Американское агентство передовых разработок DARPA планирует запустить масштабную космическую программу, разработанную на сто и более лет. Главной ее целью является желание исследовать пространство за пределами Солнечной Системы на предмет потенциальной его колонизации Человечеством. При этом само DARPA планирует потратить на это лишь 100 миллионов долларов, основная же финансовая нагрузка ляжет на плечи частных инвесторов. Подобный режим сотрудничества в агентстве сравнивают с исследовательскими экспедициями 16 века, во время которых их руководители, действуя под флагами разных стран, в итоге получали большую часть доходов от присоединенных к Короне территорий и статус королевского наместника в них.




Известный режиссер Джеймс Кэмерон основал фонд, который займется проблемой использования астероидов в полезных для Человечества целях. Ведь эти космические объекты полны редкоземельных элементов. А той же платины в 500-метровом астероиде может оказаться больше, чем было добыто на Земле за всю ее историю. Так почему бы не попытаться достать эти ресурсы? К начинанию Кэмерона присоединились Google, The Perot Group, Hillwood и некоторые другие компании.




Япония планирует в самом ближайшем будущем построить т.н. «солнечный парус» ESAIL, который, благодаря давлению солнечных лучей на его поверхность, будет двигаться по космическому пространству со скоростью 19 километров в секунду. А это сделает его самым быстрым рукотворным объектом в Солнечной Системе.




В апреле 2015 года Российское Космическое Агентство объявило о своих амбициозных планах, подразумевающими создание обитаемых баз на Луне и Марсе уже к 2050 году. При этом все значимые спуски в ее рамках будут осуществлены не с Байконура, с нового космодрома Восточный, который сейчас строится на Дальнем Востоке.




Предвещая и дальнейшее развитие частных полетов на орбиту Земли, российская компания Орбитальные Технологии совместно с РКК Энергия запустили проект с названием Commercial Space Station по созданию первого отеля для космических туристов. Ожидается, что первый его модуль будет отправлен в Космос уже в 2015-2016 годах.




Одним из самых перспективных направлений по освоению Космоса считается разработка идеи космического лифта, который мог бы поднимать по тросу объекты на орбиту Земли. Создать первый подобный транспорт обещает к 2050 году японская компания Obayashi Corporation. Лифт этот сможет двигаться со скоростью 200 километров в час и нести в себе одновременно 30 человек.




На орбите Земли находится огромное количество старых, отработавших свое спутников, превратившихся в так называемый «космический мусор». И это при том, что запуск одного только килограмма груза туда составляет в среднем 30 тысяч долларов. Вот по этой причине агентство DARPA и решило начать разработку космической станции Phoenix, которая займется отловом старых спутников и сбором из них новых, функционирующих.


Космические корабли «Восток». 12 апреля 1961 г. трехступенчатая ракета-носитель доставила на околоземную орбиту космический корабль «Восток», на борту которого находился гражданин Советского Союза Юрий Алексеевич Гагарин.

Трехступенчатая ракета-носитель состояла из четырех боковых блоков (I ступень), расположенных вокруг центрального блока (II ступень). Над центральным блоком помещена III ступень ракеты. На каждом из блоков I ступени был установлен четырех-камерный жидкостно-реактивный двигатель РД-107, а на II ступени — четырехкамерный реактивный двигатель РД-108. На III ступени был установлен однокамерный жидкостно-реактивный двигатель с четырьмя рулевыми соплами.

Ракета-носитель «Восток»

1 — головной обтекатель; 2 — полезный груз; 3 — кислородный бак; 4 — экран; 5 — керосиновый бак; 6 — управляющее сопло; 7 — жидкостный ракетный двигатель (ЖРД); 8 — переходная ферма; 9 — отражатель; 10 — приборный отсек центрального блока; 11 и 12 — варианты головного блока (с АМС «Луна-1» и с АМС «Луна-3» соответственно).

Лунная Для полета человека
Стартовая масса, т 279 287
Масса полезного груза, т 0,278 4,725
Масса топлива, т 255 258
Тяга двигателя, кН
I ступени (на Земле) 4000 4000
II ступени (в пустоте) 940 940
III ступени (в пустоте) 49 55
Максимальная скорость, м/с 11200 8000

Корабль «Восток» состоял из соединенных вместе спускаемого аппарата и приборно-агрегатного отсека. Масса корабля около 5 т.

Спускаемый аппарат (кабина экипажа) был выполнен в виде шара диаметром 2,3 м. В спускаемом аппарате было установлено кресло космонавта, приборы управления, система жизнеобеспечения. Кресло располагалось таким образом, чтобы возникающая при взлете и посадке перегрузка оказывала на космонавта наименьшее действие.

Космический корабль «Восток»

1 — спускаемый аппарат; 2 — катапультируемое кресло; 3 — баллоны со сжатым воздухом и кислородом; 4 — тормозной ракетный двигатель; 5 — третья ступень ракеты-носителя; 6 — двигатель третьей ступени.

В кабине поддерживалось нормальное атмосферное давление и такой же, как на Земле, состав воздуха. Шлем скафандра был открыт, и космонавт дышал воздухом кабины.

Мощная трехступенчатая ракета-носитель выводила корабль на орбиту с максимальной высотой над поверхностью Земли 320 км и минимальной— 180 км.

Рассмотрим, как устроена система приземления корабля «Восток». После включения тормозного двигателя скорость полета уменьшалась и начиналось снижение корабля.

На высоте 7000 м открывалась крышка люка и из спускаемого аппарата выстреливалось кресло с космонавтом. В 4 км от Земли кресло отделялось от космонавта и падало, а он продолжал спуск на парашюте. На 15-метровом шнуре (фале) вместе с космонавтом спускался неприкосновенный аварийный запас (НАЗ) и лодка, которая автоматически надувалась при посадке на воду.

Схема спуска корабля «Восток»

1 и 2 — ориентация по Солнцу;

4 — включение тормозного двигателя;

5 — отделение приборного отсека;

6 — траектория полета спускаемого аппарата;

7 — катапультирование космонавта из кабины вместе с креслом;

8 — спуск на тормозном парашюте;

9 — ввод в действие основного парашюта;

10 — отделение НАЗа;

11 —посадка;

12 и 13 — открытие тормозного и основного парашютов;

14 — спуск на основном парашюте;

15 — посадка спускаемого аппарата.

Независимо от космонавта на высоте 4000 м раскрывался тормозной парашют спускаемого аппарата и скорость падения его существенно уменьшалась. В 2,5 км от Земли раскрывался основной парашют, плавно опускающий аппарат на Землю.

Космические корабли «Восход». Расширяются задачи космических полетов и соответственно совершенствуются космические корабли. 12 октября 1964 г. сразу три человека поднялись в космос на корабле «Восход»: В. М. Комаров (командир корабля), К. П. Феоктистов (ныне доктор физико-математических наук) и Б. Б. Егоров (врач).

Новый корабль существенно отличался от кораблей серии «Восток». Он вмещал трех космонавтов, имел систему мягкой посадки. «Восход-2» имел шлюзовую камеру для выхода из корабля в открытый космос. Он мог не только спускаться на сушу, но и приводняться. Космонавты находились в первом корабле «Восход» в полетных костюмах без скафандров.

Полет корабля «Восход-2» состоялся 18 марта 1965 г. На борту находился командир летчик-космонавт П. И. Беляев и второй пилот летчик-космонавт А. А. Леонов.

После выхода космического корабля на орбиту была раскрыта шлюзовая камера. Шлюзовая камера развернулась с наружной стороны кабины, образовав цилиндр, в котором мог разместиться человек в скафандре. Изготовлен шлюз из прочной герметичной ткани, и в сложенном состоянии он занимает мало места.

Космический корабль «Восход-2» и схема шлюзования на корабле

1,4,9, 11 — антенны; 2 — телевизионная камера; 3 — баллоны со сжатым воздухом и кислородом; 5 — телевизионная камера; 6 — шлюз до наполнения; 7 — спускаемый аппарат; 8 — агрегатный отсек; 10 — двигатель системы торможения; А — наполнение шлюза воздухом; Б — выход космонавта в шлюз (люк открыт); В — выпуск воздуха из шлюза наружу (люк закрыт); Г — выход космонавта в космос при открытом наружном люке; Д — отделение шлюза от кабины.

Мощная система наддува обеспечила наполнение шлюза воздухом и создание в нем такого же давления, как и в кабине. После того как давление в шлюзе и в кабине выравнялось, А. А. Леонов надел ранец, в котором размещались баллоны с сжатым кислородом, подключил провода связи, открыл люк и «перешел» в шлюз. Покинув шлюз, он удалился на некоторое расстояние от корабля. С кораблем его связывала только тонкая нить фала, человек и корабль движутся рядом.

Двадцать минут А. А. Леонов находился вне кабины, из них двенадцать минут — в свободном полете.

Первый выход человека в космическое пространство позволил получить ценнейшую информацию для последующих экспедиций. Было доказано, что хорошо подготовленный космонавт даже в условиях открытого космоса может выполнять различные задания.

Корабль «Восход-2» был доставлен на орбиту ракетно-космической системой «Союз». Унифицированная система «Союз» начала создаваться под руководством С. П. Королева уже в 1962 г. Она должна была обеспечить не отдельные прорывы в космос, а его планомерное обживание как новой сферы обитания и производственной деятельности.

При создании ракеты-носителя «Союз» основной доработке подверглась головная часть, фактически она была создана заново. Это было вызвано единственным требованием — обеспечить спасение космонавтов при аварии на стартовой площадке и атмосферном участке полета.

«Союз» — третье поколение космических кораблей. Корабль «Союз» состоит из орбитального отсека, спускаемого аппарата и приборно-агрегатного отсека.

В кабине спускаемого аппарата расположены кресла космонавтов. Форма кресла позволяет легче переносить перегрузки, возникающие при взлете и посадке. На кресле расположены ручка управления ориентацией корабля и ручка управления скоростью при маневрировании. Специальный амортизатор смягчает удары, возникающие при посадке.

На «Союзе» имеются две автономно действующие системы жизнеобеспечения: система жизнеобеспечения кабины и система жизнеобеспечения скафандра.

Система жизнеобеспечения кабины поддерживает в спускаемом аппарате и орбитальном отсеке привычные для человека условия: давление воздуха около 101 кПа (760 мм рт. ст.), парциальное давление кислорода около 21,3 кПа (160 мм рт. ст.), температуру 25—30°С, относительную влажность воздуха 40—60%.

Система жизнеобеспечения производит очистку воздуха, собирает и хранит отходы. Принцип работы системы очистки воздуха основан на использовании кислородосодержащих веществ, поглощающих углекислый газ и часть влаги из воздуха и обогащающих его кислородом. Регулирование температуры воздуха в кабине производится с помощью радиаторов, установленных на наружной поверхности корабля.

Ракета-носитель «Союз»

Стартовая масса, т - 300

Масса полезного груза, кг

«Союз» - 6800

«Прогресс» - 7020

Тяга двигателей, кН

I ступени - 4000

II ступени - 940

III ступени - 294

Максимальная скорость, м/с 8000

1— система аварийного спасения (САС); 2 —пороховые ускорители; 3 — корабль «Союз»; 4 — стабилизирующие щитки; 5 и 6 — топливные баки III ступени; 7 — двигатель III ступени; 8 — ферма между II и III ступенями; 9 — бак с окислителем I ступени; 10 — бак с окислителем I ступени; 11 и 12—баки с горючим I ступени; 13 — бак с жидким азотом; 14 — двигатель I ступени; 15 — двигатель II ступени; 16 — камера управления; 7 — воздушный руль.

Автобус подъехал к стартовой позиции. Из него вышли космонавты и направились к ракете. В руке у каждого чемоданчик. Очевидно, многие сочли, что там уложено самое необходимое для дальней дороги. Но если присмотреться внимательно, то можно заметить, что чемоданчик связан с космонавтом гибким шлангом.

Скафандр ведь необходимо непрерывно вентилировать, чтобы удалять выделяемую космонавтом влагу. В чемоданчике находится вентилятор с электроприводом и источник электроэнергии — аккумуляторная батарея.

Вентилятор засасывает воздух из окружающей атмосферы и прогоняет его через вентилирующую систему скафандра.

Подойдя к открытому люку корабля, космонавт отсоединит шланг и войдет в корабль. Заняв свое место в рабочем кресле корабля, он подсоединится к системе жизнеобеспечения скафандра и закроет иллюминатор шлема. С этого момента воздух в скафандр подается вентилятором (150—200 л в мин). Но если давление в кабине начнет падать, то включится аварийная подача кислорода из специально предусмотренных баллонов.

Варианты головного блока

I — с кораблем «Восход-2»; II—с кораблем «Союз-5»; III — с кораблем «Союз-12»; IV — с кораблем «Союз-19»

Космический корабль «Союз Т» создан на базе корабля «Союз». «Союз Т-2» впервые выведен на орбиту в июне 1980 г. экипажем в составе командира корабля Ю. В. Малышева и бортинженера В. В. Аксенова. Новый корабль создан с учетом опыта разработки и эксплуатации КК «Союз» — состоит из орбитального (бытового) отсека с агрегатом стыковки, спускаемого аппарата и приборно-агрегатного отсека новой конструкции. На «Союзе Т» установлены новые бортовые системы, в том числе радиосвязи, ориентации, управления движением, и бортовой вычислительный комплекс. Стартовая масса корабля 6850 кг. Расчетная продолжительность автономного полета 4 суток, в составе орбитального комплекса 120 суток.

С. П. Уманский

1986 «Космонавтика сегодня и завтра»


В 2011 году США оказались без космических транспортных средств, способных доставить человека на околоземную орбиту. Сейчас американские инженеры конструируют больше новых пилотируемых космических аппаратов, чем когда бы то ни было, причем лидируют частные компании, а это значит, что освоение космоса станет намного дешевле. В этой статье мы расскажем о семи проектируемых аппаратах, и если хотя бы некоторые из этих проектов воплотятся в жизнь, наступит новый золотой век в пилотируемой космонавтике.

  • Тип: обитаемая капсула Создатель: Space Exploration Technologies / Элон Маск
  • Дата запуска: 2015 год
  • Предназначение: рейсы на орбиту (до МКС)
  • Шансы на успех: весьма приличные

Когда в 2002 году Элон Маск учредил свою компанию Space Exploration Technologies, или SpaceX, скептики не видели в этом никаких перспектив. Однако уже к 2010 году его стартап стал первым частным предприятием, сумевшим повторить то, что было до того времени епархией государства. Ракета Falcon 9 вывела на орбиту беспилотную капсулу Dragon.

Следующий шаг на пути Маска в космос – разработка на базе капсулы многоразового использования Dragon аппарата, способного нести людей на борту. Он будет носить имя DragonRider и предназначается для полетов к МКС. Используя новаторский подход как в конструировании, так и в принципах эксплуатации, компания SpaceX заявляет, что перевозки пассажиров обойдутся всего по $20 млн за одно пассажиро-место (пассажиро-место в российском «Союзе» обходится сегодня США в $63 млн).

Путь к пилотируемой капсуле

Усовершенствованный интерьер

Капсула будет оборудована под экипаж из семи человек. Уже внутри беспилотной версии поддерживается земное давление, так что ее будет несложно адаптировать для пребывания людей.

Более широкие иллюминаторы

Через них астронавты смогут наблюдать процесс стыковки с МКС. В будущих модификациях капсулы – с возможностью посадки на реактивной струе – потребуется еще более широкий обзор.

Дополнительные двигатели, развивающие тягу 54 т для экстренного подъема на орбиту в случае аварии ракеты-носителя.

Dream Chaser — Потомок космического челнока

  • Тип: космический самолет с запуском при помощи ракеты-носителя Создатель: Sierra Nevada Space Systems
  • Планируемый запуск на орбиту: 2017 год
  • Предназначение: орбитальные полеты
  • Шансы на успех: хорошие

Конечно, у космических самолетов есть определенные достоинства. В отличие от обычной пассажирской капсулы, которая, падая сквозь атмосферу, может лишь слегка корректировать траекторию, шаттлы способны осуществлять при спуске маневры и даже менять аэродром назначения. Кроме того, их можно использовать повторно после краткого сервисного обслуживания. Однако катастрофы двух американских челноков показали, что и космические самолеты отнюдь не идеальное средство для орбитальных экспедиций. Во-первых, возить грузы на тех же аппаратах, что и экипажи, дорого, ведь, используя чисто грузовой корабль, можно сэкономить на системах безопасности и жизнеобеспечения.

Во-вторых, крепление шаттла сбоку к ускорителям и топливному баку повышает опасность повреждения от случайно отвалившихся элементов этих конструкций, что и стало причиной гибели челнока Columbia. Однако компания Sierra Nevada Space Systems клянется, что сумеет обелить репутацию орбитального космического самолета. Для этого у нее есть Dream Chaser – крылатый аппарат для доставки экипажей на космическую станцию. Уже сейчас компания борется за контракты NASA. В конструкции Dream Chaser избавились от основных недостатков, характерных для старых космических челноков. Во-первых, теперь грузы и экипажи намерены возить по отдельности. А во-вторых, теперь корабль будет монтироваться не сбоку, а наверху ракеты-носителя Atlas V. При этом все достоинства шаттлов сохранятся.

Суборбитальные полеты аппарата назначены на 2015 год, а на орбиту он будет выведен на два года позже.

Как там внутри?

На этом аппарате в космос могут отправиться сразу семь человек. Корабль стартует на верхушке ракеты.

На заданном участке он отделяется от носителя и затем может причалить к стыковочному узлу космической станции.

Dream Chaser еще ни разу не летал в космос, но уже готов, по крайней мере, для пробежек по взлетной полосе. Кроме того, его сбрасывали с вертолетов, испытывая аэродинамические возможности корабля.

New Shepard — Секретный корабль от Amazon

  • Тип: обитаемая капсула Создатель: Blue Origin / Джефф Безос
  • Дата запуска: неизвестна
  • Шансы на успех: неплохие

Джефф Безос – 49-летний основатель компании Amazon.com и миллиардер со своим видением будущего – уже более десяти лет воплощает в жизнь тайные планы по освоению космоса. Из своего 25-миллиардного капитала Безос вложил уже многие миллионы в дерзкое начинание, которое получило имя Blue Origin. Его аппарат будет взлетать с экспериментальной стартовой площадки, которая построена (разумеется, с одобрения FAA) в глухом углу Западного Техаса.

В 2011 году компания опубликовала кадры, на которых видна подготовленная к испытаниям конусообразная ракетная система New Shepard. Она взлетает вертикально на высоту в полторы сотни метров, зависает там на некоторое время, а затем плавно опускается на землю с помощью реактивной струи. Согласно проекту, в будущем ракета-носитель сможет, забросив капсулу на суборбитальную высоту, самостоятельно вернуться на космодром, используя собственный двигатель. Это гораздо более экономичная схема, чем вылавливание использованной ступени в океане после приводнения.

После того как в 2000 году интернет-предприниматель Джефф Безос основал свою космическую компанию, он три года хранил в тайне сам факт ее существования. Компания запускает свои экспериментальные аппараты (наподобие той капсулы, которая изображена на фото) с частного космопорта в Западном Техасе.

Система состоит из двух частей.

Капсула для экипажа, в которой поддерживается нормальное атмосферное давление, отделяется от носителя и летит на высоту 100 км. Маршевый двигатель позволяет ракете совершить вертикальную посадку неподалеку от стартового стола. Сама капсула затем возвращается на землю с помощью парашюта.

Ракета-носитель поднимает аппарат со стартового стола.

SpaceShipTwo — Пионер в туристическом бизнесе

  • Тип: космический корабль, запускаемый в воздухе с самолета-носителя Создатель: Virgin Galactic /
  • Ричард Брэнсон
  • Дата запуска: намечено на 2014 год
  • Предназначение: суборбитальные полеты
  • Шансы на успех: очень хорошие

Первый из аппаратов SpaceShipTwo во время испытательного планирующего полета. В будущем будут построены еще четыре таких же аппарата, которые начнут возить туристов. В очередь на полет записались уже 600 желающих, включая и таких знаменитостей, как Джастин Бибер, Эштон Кутчер и Леонардо Ди Каприо.

Аппарат, построенный знаменитым конструктором Бертом Рутаном в сотрудничестве с магнатом Ричардом Брэнсоном, владельцем компании Virgin Group, заложил основу будущего космического туризма. Почему бы не катать в космос всех желающих? В новой версии этого аппарата смогут разместиться шесть туристов и два пилота. Путешествие в космос будет состоять из двух частей. Сначала авиаматка WhiteKnightTwo (ее длина – 18 м, а размах крыльев – 42) поднимет аппарат SpaceShipTwo на высоту 15 км.

Затем реактивный аппарат отделится от самолета-носителя, запустит собственные двигатели и рванет в космос. На высоте 108 км пассажиры отлично рассмотрят и кривизну земной поверхности, и безмятежное сияние земной атмосферы – и все это на фоне черных космических глубин. Билет стоимостью в четверть миллиона долларов позволит путешественникам наслаждаться невесомостью, но всего лишь четыре минуты.

Inspiration Mars — Поцелуй над Красной планетой

  • Тип: межпланетный транспорт Создатель: Фонд Inspiration Mars / Деннис Тито
  • Дата запуска: 2018 год
  • Предназначение: полет на Марс
  • Шансы на успех: сомнительные

Медовый месяц (длиной полтора года) в межпланетной экспедиции? Такую возможность хочет предложить избранной паре фонд Inspiration Mars, которым руководит бывший инженер NASA, специалист по инвестициям и первый космический турист Деннис Тито. Группа Тито рассчитывает воспользоваться преимуществом парада планет, который произойдет в 2018 году (такое бывает раз в 15 лет). «Парад» позволит слетать от Земли до Марса и вернуться по траектории свободного возвращения, то есть без сжигания дополнительного горючего. В будущем году Inspiration Mars начнет принимать заявки на экспедицию длительностью 501 день.

Корабль должен будет пролететь на расстоянии 150 км от поверхности Марса. Для участия в полете предполагается выбрать супружескую пару – возможно, молодоженов (важен вопрос психологической совместимости). «По оценкам фонда Inspiration Mars, потребуется собрать $1–2 млрд. Мы закладываем фундамент под дела, которые раньше казались просто немыслимыми, такие, скажем, как полет на другие планеты», – говорит Марко Касерес, руководитель космических исследований фирмы Teal Group.

  • Тип: космический самолет, способный взлетать самостоятельно Создатель: XCOR Aerospace
  • Дата планируемого запуска: 2014 год
  • Предназначение: суборбитальные полеты
  • Шансы на успех: вполне приличные

В калифорнийской компании XCOR Aerospace (штаб-квартира в Мохаве) полагают, что у них в руках ключ к самым дешевым суборбитальным полетам. Компания уже продает билеты на свой 9-метровый аппарат Lynx, рассчитанный всего на двух пассажиров. Билеты стоят $95 000.

В отличие от других космических самолетов и пассажирских капсул, Lynx для выхода в космос не нуждается в ракете-носителе. Запустив специально разработанные под этот проект реактивные двигатели (в них будет сжигаться керосин с жидким кислородом), Lynx взлетит с полосы в горизонтальном направлении, как это делает обычный самолет, и, лишь разогнавшись, круто взмоет по своей космической траектории. Первый испытательный полет аппарата может состояться в ближайшие месяцы.

Взлет: космический самолет разгоняется по взлетной полосе.

Подъем: достигнув скорости 2,9 Маха, он круто набирает высоту.

Цель: примерно через 3 минуты после взлета двигатели выключаются. Самолет следует параболической траектории, проносясь сквозь суборбитальное космическое пространство.

Возвращение в плотные слои атмосферы и посадка.

Аппарат постепенно сбрасывает скорость, нарезая круги по нисходящей спирали.

Orion — Пассажирская капсула для большой компании

  • Тип: обитаемый корабль повышенного объема для межзвездных перелетов
  • Создатель: NASA / Конгресс США
  • Дата запуска: 2021–2025 годы

Полеты на околоземную орбиту NASA уже без сожаления уступило частным компаниям, однако от претензий на дальний космос агентство еще не отказалось. К планетам и астероидам, возможно, полетит многоцелевой обитаемый аппарат Orion. Он будет состоять из капсулы, состыкованной с модулем, который, в свою очередь, будет заключать в себе силовую установку с запасом топлива, а также жилой отсек. Первый испытательный полет капсулы состоится в 2014 году. Ее выведет в космос ракета-носитель Delta длиной 70 м. Затем капсула должна вернуться в атмосферу и приземлиться в воды Тихого океана.

Под дальние экспедиции, для которых готовится Orion, будет, видимо, построена и новая ракета. На заводах NASA в Хантсвилле, штат Алабама, уже ведутся работы над новой 98-метровой ракетой Space Launch System. Этот сверхтяжелый транспорт должен быть готов к тому моменту, когда (и если) астронавты NASA соберутся лететь на Луну, на какой-нибудь астероид или еще дальше. «Мы все больше думаем о Марсе, – говорит Дэн Дамбахер, заведующий в NASA отделом разработки исследовательских систем, – как о нашей главной цели». Правда, некоторые критики говорят, что подобные претензии несколько чрезмерны. Проектируемая система столь огромна, что NASA сможет использовать ее не чаще, чем раз в два года, так как один ее запуск будет обходиться в $6 млрд.

Когда человек ступит на астероид?

В 2025 году NASA планирует отправить астронавтов в корабле Orion на один из расположенных недалеко от Земли астероидов – 1999АО10. Путешествие должно занять пять месяцев.

Запуск: Orion с экипажем из четырех человек взлетит с мыса Канаверал, штат Флорида.

Перелет: после пяти дней полета Orion, используя силу притяжения Луны, сделает вокруг нее вираж и возьмет курс на 1999АО10.

Встреча: астронавты долетят до астероида спустя два месяца после старта. Две недели они проведут на его поверхности, но о настоящей посадке не идет речи, так как этот космический камень имеет слишком слабую гравитацию. Скорее, члены экипажа просто прикрепят свой корабль к поверхности астероида и соберут образцы минералов.

Возвращение: поскольку все это время астероид 1999АО10 постепенно приближается к Земле, обратный путь окажется немного короче. Добравшись до околоземной орбиты, капсула отделится от корабля и приводнится в океане.