Аварии при прокладке магистральных трубопроводов. Аварии на магистральных трубопроводах

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Подземные магистральные газопроводы

1. Технологическая схема магистрального газопровода

Магистральные газопроводы - это стальные трубопроводы, по которым транспортируется природный или искусственный газ от мест добычи или производства к местам его потребления. Диаметр газопровода, в основном, варьируется от 700 мм до 1400 мм. Глубина прокладки газопровода от 0,8 до 1 м.

В зависимости от рабочего давления газопроводы подразделяют на два класса:

1 класс - свыше 2,5 до 10 МПа включительно;

2 класс - свыше 1,2 до 2,5 МПа включительно.

В состав магистрального газопровода входят (Рисунок 1.1): собственно газопровод и его ответвления, головные сооружения, компрессорная станция, пункты контрольно-измерительной аппаратуры, ремонтно-эксплуатационная служба, газораспределительная станция, подземные хранилища газа, линии связи и электропередачи, установки электрозащиты газопровода от коррозии, вспомогательные сооружения (водоснабжения и канализации, усадьбы линейных обходчиков, административные и хозяйственно-бытовые объекты).

Рисунок 1.1 - Состав магистрального газопровода, где ГСС - газосборные сети, ГКС - головная компрессорная станция, КС - промежуточная компрессорная станция, ГХ - подземное хранилище газа

Головные сооружения служат для очистки газа от вредных примесей (удаления влаги, отделения серы и других ценных компонентов) и подготовки его к транспортировке.

Компрессорные станции (КС) - это комплекс сооружений, предназначенный для сжатия транспортируемого газа до такого давления, которое обеспечило бы бесперебойную подачу его от месторождения до потребителей.

В состав КС входят: компрессорный цех с установками для сжатия газа (его пластовое давление на промысле невелико), пылеулавливатели, установки для очистки газа и другие объекты.

При подходе магистрального газопровода к местам потребления газа (городам, поселкам, предприятиям) давление в нем должно быть снижено до уровня, необходимого потребителям (0,3-1,2 МПа). Для этого предназначены газораспределительные станции (ГРС), в которых размещается аппаратура по снижению давления, дополнительной очистке и осушке газа.

Для регулирования неравномерности потребления газа устраивают подземные газохранилища. Сооружают их в водонасыщенных пористых пластах, отработанных нефтяных и газовых месторождениях.

При эксплуатации магистральных газопроводов контролю подлежат следующие основные показатели:

а) давление газа в начале и в конце участка, на выходе с промысла и на отводах на газораспределительные станции;

б) количество транспортируемого газа, температура его на входе и выходе компрессорной станции, средняя по участку, на входе в газораспределительную станцию;

в) наличие конденсата, влаги, сероводорода, тяжелых углеводородов и загрязнений в газе, давление на входе и выходе компрессорной станции, количество работающих агрегатов и режим их работы;

г) исправность оборудования на компрессорных и газораспределительных станциях, герметичность газопровода;

д) режим закачки газа в подземные хранилища, режим отбора газа постоянными и буферными потребителями и другие показатели, характеризующие состояние газопровода, его сооружений и оборудования.

Для компримирования больших потоков газа, транспортируемых по магистральным газопроводам, суммарная мощность перекачивающих компрессорных установок достигает 50-60 тыс. кВт на одной станции. При сжатии газа на компрессорной станции ему сообщается значительное количество теплоты. Применение для газопроводов труб большого диаметра вызывает уменьшение удельной теплообменной поверхности труб на единицу количества транспортируемого газа. Поэтому по пути следования к следующей станции газ не может охладиться до необходимой температуры за счет теплоотдачи в окружающую среду, т.е. его температура после каждой станции будет повышаться. Максимальная температура транспортируемого газа ограничивается обеспечением устойчивости газопровода, прочностными характеристиками изоляции, климатическими и геологическими условиями на трассе газопровода. Поэтому возникает необходимость охлаждения газа после сжатия.

В зависимости от перечисленных факторов температура транспортируемого газа должна составлять 40-70°С.

Рисунок 1.2 - Общий вид транспортировки газа

2. Виды аварий на магистральном газопроводе

Доминирующими причинами аварий на магистральных газопроводах являются следующие:

Коррозионное разрушение газопроводов, 48%;

Брак строительно-монтажных работ (СМР), 21%;

Обобщенная группа механических повреждений, 20%;

Заводские повреждения труб 11%.

Где, обобщенная группа механически повреждений следующая:

Случайное повреждение при эксплуатации, 9%;

Террористические акты, 8%;

Природные воздействия, 3%.

Большинство аварий на магистральных трубопроводах ограничивается утечкой газа, равной объему трубы до отключающей арматуры. Или горение факела. Но также возможны большие катастрофы, как например, Железнодорожная катастрофа под Уфой - крупнейшая в истории России и СССР железнодорожная катастрофа, произошедшая 4 июня (3 июня по московскому времени) 1989 года в Иглинском районе Башкирской АССР в 11 км от города Аша (Челябинская область) на перегоне Аша - Улу-Теляк. В момент прохождения двух пассажирских поездов №211 «Новосибирск-Адлер» и №212 «Адлер-Новосибирск» произошёл мощный взрыв облака лёгких углеводородов, образовавшегося в результате аварии на проходящем рядом трубопроводе «Сибирь-Урал-Поволжье». Погибли 575 человек (по другим данным 645), 181 из них - дети, ранены более 600.

На трубе продуктопровода «Западная Сибирь-Урал-Поволжье», по которому транспортировали широкую фракцию лёгких углеводородов (сжиженную газобензиновую смесь), образовалась узкая щель длиной 1,7 м. Из-за протечки трубопровода и особых погодных условий газ скопился в низине, по которой в 900 метрах от трубопровода проходила Транссибирская магистраль, перегон Улу-Теляк - Аша Куйбышевской железной дороги, 1710-й километр магистрали, в 11 километрах от станции Аша, на территории Иглинского района Башкирской АССР.

Примерно за три часа до катастрофы приборы показали падение давления в трубопроводе. Однако вместо того, чтобы искать утечку, дежурный персонал лишь увеличил подачу газа для восстановления давления. В результате этих действий через почти двухметровую трещину в трубе под давлением вытекло значительное количество пропана, бутана и других легковоспламенимых углеводородов, которые скопились в низине в виде «газового озера». Возгорание газовой смеси могло произойти от случайной искры или сигареты, выброшенной из окна проходящего поезда.

Машинисты проходящих поездов предупреждали поездного диспетчера участка, что на перегоне сильная загазованность, но этому не придали значения.

4 июня 1989 года в 01:15 по местному времени (3 июня в 23:15 по московскому времени) в момент встречи двух пассажирских поездов прогремел мощный объёмный взрыв газа и вспыхнул гигантский пожар.

В поездах №211 «Новосибирск-Адлер» (20 вагонов, локомотив ВЛ10-901) и №212 «Адлер-Новосибирск» (18 вагонов, локомотив ЧС2-689) находилось 1284 пассажира (в том числе 383 ребёнка) и 86 членов поездных и локомотивных бригад. Ударной волной с путей было сброшено 11 вагонов, из них 7 полностью сгорели. Оставшиеся 27 вагонов обгорели снаружи и выгорели внутри. По официальным данным 575 человек погибло (по другим данным 645), 623 стали инвалидами, получив тяжёлые ожоги и телесные повреждения. Детей среди погибших - 181.

Официальная версия утверждает, что утечка газа из продуктопровода стала возможной из-за повреждений, нанесённых ему ковшом экскаватора при его строительстве в октябре 1985 года, за четыре года до катастрофы. Утечка началась за 40 минут до взрыва.

По другой версии причиной аварии явилось коррозионное воздействие на внешнюю часть трубы электрических токов утечки, так называемых «блуждающих токов» железной дороги. За 2-3 недели до взрыва образовался микросвищ, затем, в результате охлаждения трубы в месте расширения газа появилась разраставшаяся в длину трещина. Жидкий конденсат пропитывал почву на глубине траншеи, не выходя наружу, и постепенно спускался вниз по откосу к железной дороге.

При встрече двух поездов, вероятно в результате торможения, возникла искра, которая послужила причиной детонации газа. Но скорее всего причиной детонации газа явилась случайная искра из-под пантографа одного из локомотивов.

Рисунок 2.1 - катастрофа под Уфой

3. Поражающие факторы

Поражающие факторы при аварии на магистральном газопроводе:

а) барического воздействия волн сжатия, образующихся за счет расширения в атмосфере природного газа, выброшенного под давлением из разрушенного участка трубопровода («первичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

б) барического воздействия воздушных волн сжатия, образующихся при воспламенении газового облака и расширении продуктов его сгорания («вторичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

в) термического воздействия огненного шара при воспламенении переобогащенного топливом газового облака, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50С, разрушение трубопровода 350С);

г) термического воздействия воспламенившихся струй газа, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50 ?С, разрушение трубопровода 350 ?С).

д) воздействие осколков (или фрагментов) трубы, измеряется как кг.

Объекты поражения: Человек, Газопровода, Рядом находящиеся эксплуатационные объекты, Атмосфера.

Анализ поражающих факторов при аварии в местах пересечения магистральных газопроводов показывает, что при воздействии ударной волны на верхний газопровод в результате расширения газа, выбрасываемого из нижнего газопровода, давление во фронте ударной волны составляет от 6,4 МПа, а значение импульса составляет 88,3 кПа·с. При аварийных разрывах, как показывает анализ статистических данных, возможно образование осколков магистральных газопроводов массой более трех тысяч килограмм. Некоторые фрагменты могут достигать 10 тонн. При этом выброс осколков из траншеи в 75% случаях размером примерно 25 метров на 4,5 происходит на расстояние от 16 до 400 метров. Следует отметить, что при вязком разрушении расстояние выброса может достигать 180 метров, а при хрупком - до 700 метров.

По расчетным методикам получается так, что сквозные пробития верхнего газопровода могут возникнуть когда масса осколков будет превышать 1300 килограмм при прямом ударе и 2800 - при косом. При скорости осколка, равной скорости метания грунта при угле раскрытия нижнего магистрального газопровода равном 30 градусам, верхний газопровод разрушается под воздействием осколочных фрагментов более 240 килограмм. Если угол раскрытия равен 60 градусам, газопровод разрушается от осколка массой 1300 кг.

При тепловом воздействии на смежный аварийному верхний газопровод, получается интересная картина: длина факела может достигнуть нескольких сотен метров, распространение пожара в котловане - до 80 метров, температура в зоне горения достигает 1500 ?С, тепловой поток вырастает до 200 кВт/м?. При воздействии на газопровод теплового потока горящего газа температура разрушения газопровода составляет 330 ?С, а время прошедшее от начала теплового воздействия, до разрушения составляет от трех до пяти минут.

4. Безопасность магистральных газопроводов

Чтобы иметь возможность отключать отдельные участки газопровода для ремонтных работ, а также для сохранения газа во время аварийных разрывов газопровода, на магистральных газопроводах не реже чем через 20-25 км устанавливают запорную отключающую арматуру. Кроме того, запорная арматура устанавливается во всех ответвлениях к потребителям газа, на шлейфах компрессорных станций, на берегах рек и др. Чтобы иметь возможность сбрасывать газ при необходимости опорожнения газопровода, запорную арматуру устанавливают также и на свечах.

Запорная арматура группируется в линейные отключающие устройства. В неё входит:

ь Запорная арматура с байпасом (например, кран);

ь Продувочные свечи (расположены от крана 5 - 15 м);

ь Свечи предназначены для сбрасывания газа в атмосферу.

В качестве запорной арматуры применяются краны, задвижки и вентили.

Кранами называется такая запорная арматура, которая закрывает или открывает проход жидкости или газа путем поворота пробки.

По конструкции краны делятся на простые поворотные краны с выдвижной пробкой и краны с принудительной смазкой, по способу присоединения к трубопроводу - на фланцевые, муфтовые и с концами под приварку, по роду управления - с ручным управлением, с пневмоприводом и с пневмогидравлическим приводом. Последние имеют дублирующий ручной привод.

На магистральных газопроводах применяются краны с принудительной смазкой на давление до 64 кГ/см? типа 11с320бк и 11с321бк, а также краны со сферическим затвором.

Задвижки

Запорная арматура, в которой проход открывается путем подъема плоского диска перпендикулярно движению среды, называется задвижкой.

На магистральных газопроводах применяют только стальные задвижки на давление до 64 кГ/см? с условным проходом от 50 до 600 мм. Для задвижек, устанавливаемых на подземных участках газопровода, строятся специальные колодцы, дающие возможность обслуживать арматуру (набивать и подтягивать сальники, смазывать, красить и т. д.). Присоединительные концы задвижек делаются как под приварку, так и для фланцевого соединения.

На магистральных газопроводах вентили применяются главным образом как запорная арматура на контрольно-измерительных приборах, конденсатосборниках, узлах запорных устройств, редуцирующих установках и др.

Линейные отключающие узлы с задвижками монтируют в специальных бетонных или кирпичных колодцах с раскрывающимися на две половины крышками, промежуточным полом (из съемных щитов) и металлической лестницей для спуска в колодец. Подземная часть колодца тщательно изолируется от попадания влаги. В сменках колодца, через который проходит газопровод, устанавливаются патроны; зазоры между ними и трубой уплотняются с помощью сальникового устройства. Трубы и арматура в колодцах должны быть тщательно вычищены и покрыты водостойкими красками.

На рисунке показаны схемы различных конструкций линейных отключающих узлов, оборудованных кранами. Как видно из рисунка, линейные отключающие узлы, предназначенные для перекрытия основной магистрали газопровода, имеют свечи по обе стороны отключающего крана для сбрасывания газа на любом из двух участков газопровода. На отключающем кране отвода от магистрального газопровода устанавливается только одна свеча за краном по направлению газа. На двухниточных переходах продувочные свечи устанавливаются на основной и резервной нитках между отключающими узлами и на основной нитке до узлов.

Коррозия металлов трубопровода

Коррозия металлов - химический или электрохимический процесс разрушения их под воздействием окружающей среды. Процессы разрушения протекают относительно медленно и самопроизвольно.

На эксплуатационное состояние подземных трубопроводов оказывает воздействие электрохимическая коррозия. Электрохимическая коррозия - коррозия металлов в электролитах, сопровождающаяся образованием электрического тока. Процесс разрушения подземных трубопроводов происходит под воздействием окружающей среды (почвенного электролита). При взаимодействии металла трубы с окружающей средой поверхность трубопровода разделяется на положительные (анодные) и отрицательные (катодные) участки. Между этими участками от анода к катоду протекает электрический ток (ток коррозии), который разрушает трубопровод в местах анодных зон.

Основными факторами, определяющими коррозионную активность грунтов, являются электропроводимость, кислотность, влажность, солевой и щелочной состав, температура и воздухопроницаемость.

Разрушение подземных трубопроводов может происходить также и под воздействием блуждающих токов (электрокоррозия). Коррозия металла в этом случае связана с проникновением на трубу токов утечки с рельсов электрифицированного транспорта или других промышленных установок постоянного тока.

Способы защиты магистральных газопроводов от электрохимической коррозии пассивный и активный.

Пассивная защита включает покрытие поверхности газопровода противокоррозионной изоляцией.

К активным способам защиты газопроводов от коррозии относится электрическая, которая включает катодную, протекторную и дренажную защиты. Электрозащита дополняет пассивную защиту, чем обеспечивается предохранение газопроводов от почвенной коррозии.

Сущность катодной защиты заключается в катодной поляризации посторонним источником постоянного тока металлической поверхности трубы газопровода, соприкасающегося с землей. Поляризация осуществляется током, входящим из грунта в трубу. Труба при этом является катодом по отношению к грунту.

Сценарий событий

Возможные сценарии событий на магистральных трубопроводах:

Сценарий №1, Весенняя подвижка грунтов > Дополнительные напряжения в трубопроводе > Разрыв газопровода > Утечка газа > рассеивание утечки.

Сценарий №2, Образование трещины по продольному сварному шву > утечка газа > проникновение газа по грунту в кирпичный колодец линейного сооружения > образование газовоздушной смеси > Образование искры > Взрыв газовоздушной смеси.

Сценарий №3, Нарушение изоляции трубопровода > коррозия трубопровода > утончение стенки трубы > разрушение газопровода > утечка газа > рассеивание утечки.

Сценарий №4, Нарушение целостности газопровода внешним воздействием > утечка газа > факельное горение.

Сценарий №5, Температурные нагрузки на газопровод > усталостное разрушение труб > разрыв газопровода > утечка газа > факельное горение

Дерево событий

Ниже представлено дерево отказов, головным событием которого является аварийная разгерметизация газопровода.

Минимальные пропускные сочетания - это набор исходных событий-предпосылок, обязательного (одновременного) возникновения, которых достаточно для появления головного события (аварий).

Минимальные базовые сочетания - уравнения для головного события.

Уравнение головного события для данного дерева отказа будет:

TOP = 1.2 + 3 + 4.5 + 6 + 7

магистральный газопровод авария коррозия

Тогда расчет вероятности реализации событий для головного события, следующий:

Qtop = 1.2 + 3 + 4.5 + 6 + 7 = 0.0065525 или в процентах 0.65525%

Или вероятность событий:

Произойдет событие БРАК СМР = 0.05525%

Произойдет событие Заводской дефект труб = 0.6%.

Размещено на Allbest.ru

Подобные документы

    Использование в России трубопроводного транспорта как одного из эффективных и экономичных средств газообразных веществ. Причины коррозии на трубопроводе, аварий на нефтепроводах, газопроводе, водопроводе. Спасение пострадавших при пожарах и взрывах.

    реферат , добавлен 24.12.2015

    Состояние системы подземных трубопроводов в РФ на 2008 год. Применение новых технологий. Аварии на нефтепроводах; газопроводе; водопроводе. Последствия аварий на трубопроводах. Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах.

    реферат , добавлен 30.04.2008

    Технические характеристики аварий. Факторы радиационной опасности. Возможные пути облучения при нахождении личного состава в районе аварийной АЭС. Оценка радиационной обстановки при аварии. Лечебно-профилактические работы в очагах, их основные этапы.

    презентация , добавлен 23.08.2015

    Признаки аварии на магистральном трубопроводном транспорте. Вид ответственности должностных и юридических лиц за невыполнение требований правил по предупреждению и ликвидации чрезвычайных ситуаций. Аварии на хранилищах сжатого газа и их устранение.

    контрольная работа , добавлен 14.02.2012

    Основное понятие об авариях, примерный их перечень. Человеческий фактор как одна из причин аварий. Анализ аварий на шахте "Западная-Капитальная" (Ростовская обл., г. Новошахтинск), шахтах "Ак Булак комур", "Комсомольская", "Юбилейная", "Ульяновская".

    реферат , добавлен 06.04.2010

    Виды аварий на радиационно-опасных объектах. Особенности аварий атомной энергетики. Основные фазы протекания аварий, принципы организации и проведения защитных мероприятий. Расчет уровня шума в жилой застройке. Расчет общего производственного освещения.

    реферат , добавлен 12.04.2014

    Причины техногенных аварий. Аварии на гидротехнических сооружениях, на транспорте. Краткая характеристика крупных аварий и катастроф. Спасательные и неотложные аварийно-восстановительные работы при ликвидации крупных аварий и катастроф.

    реферат , добавлен 05.10.2006

    Виды безопасностей. Классификация чрезвычайных ситуаций. Основные поражающие факторы при радиационной аварии. Принципы защиты от ионизирующего излучения. Вредные, опасные факторы производственной среды. Воздействие на организм тока, ультразвука.

    шпаргалка , добавлен 03.02.2011

    Действие сильнодействующих ядовитых веществ на население, защита от них. Характеристика вредных и сильнодействующих ядовитых веществ. Аварии с выбросом СДЯВ. Последствия аварий на химически опасных объектах. Профилактика возможных аварии на ХОО.

    лекция , добавлен 16.03.2007

    Классификация чрезвычайных ситуаций. Краткая характеристика аварий и катастроф, характерных для Республики Беларусь. Аварии на химически опасных, пожаро- и взрывоопасных объектах. Обзор стихийных бедствий. Возможные чрезвычайные ситуации для г. Минска.

Газопрово́д - инженерное сооружение, предназначенное для транспортировки газа и его продуктов с помощью трубопровода.

Магистральным газопроводом называется трубопровод, предназначенный для транспорта газа из района добычи или производства в район его потребления, или трубопровод, соединяющий отдельные газовые месторождения.

Природный газ используется в России как топливо для электрических станций, теплоэлектроцентралей и котельных практически повсеместно, за исключением некоторых районов Дальнего Востока и Крайнего Севера. Любые аварии на газопроводах приводят к перебоям или прекращению подачи газа на электростанции и котельные.

Разрывы на магистральных ветках газопровода наиболее опасны, поскольку в таком случае целым регионам угрожает ограничение подачи газа. Существенный риск возникает и при разрывах на распределительных газопроводах, непосредственно ведущих к электростанции, ТЭЦ или котельной. Аварии на других участках газовой сети менее значимы, так как во многих случаях существует параллельная или резервная труба.

Сложность аварии характеризуется причиненным ущербом и временем, необходимым для восстановления нормальной подачи газа (от нескольких часов до нескольких суток).

К основным причинам аварий на газопроводах различных объектов газового хозяйства относятся: дефекты в сварных стыках; разрывы сварных стыков; дефекты в трубах, допущенные на заводе-изготовителе; разрывы компенсаторов; провисание газопровода; некачественная изоляция или ее повреждение; коррозионное разрушение газопровода; повреждение газопроводов при производстве земляных работ; повреждение надземных газопроводов транспортом; повреждение от различных механических; усилий.

27. Последствия аварий на трубопроводах

Авария на объекте трубопровода – это вылив или истечение опасной жидкости в результате полного или частичного разрушения трубопровода, его элементов, резервуаров, оборудования и устройств, сопровождаемых загрязнением рек, озёр, водохранилищ, почвы, растительности.

На пути трубопроводов, особенно большой протяженности, встречается много препятствий естественного и искусственного происхождения: водные преграды, транспортные магистрали, пересеченность местности (горная складчатость, холмы, овраги), другие трубопроводы. Для их преодоления на трубопроводах делаются отводы, позволяющие повторять изгибы местности или возвышаться над препятствиями. Аварии, происходящие на трубопроводах, в этих местах имеют наиболее опасные последствия, так как в случае выброса или разлива транспортируемый продукт может покрыть собой большие площади, поразив их и вызвав вторичные последствия аварии (взрывы, пожары, нарушения экологии).

Аварийность магистральных нефтепроводов является одним из главных критериев опасности, представляющей прямую угрозу населению и окружающей природной среде.

28. Организация своевременной локализации и ликвидации арн, требования руководящих документов

В соответствии с законом Российской Федерации разливы нефти и нефтепродуктов являются чрезвычайными ситуациями и их последствия подлежат ликвидации.

Локализация и ликвидация разливов нефти и нефтяных продуктов должна выполняться многофункциональным комплексом задач, использованием технических средств и реализацией различных методов. Использование технических средств ликвидации разливов нефти независимо от характера аварийного разлива нефтяных продуктов и нефти, первые меры по его устранению направляются на локализацию нефтяных пятен, чтобы избежать дальнейшего распространения и загрязнения соседних участков и уменьшения загрязненных площадей.

Локализация разливов нефтепродуктов и сырой нефти

В водных акваториях средствами локализации и ликвидации разливов нефти и нефтепродуктов являются боновые заграждения. Важными функциями боновых заграждений являются: предотвращение растекания на водной поверхности нефти, уменьшение концентрации нефтепродуктов для облегчения уборки, и траление нефти от экологически уязвимых районов.

Заградительные боны подразделяются на:

Отклоняющие – для защиты берега от нефти и нефтепродуктов и ограждение их;

Сорбирующие - поглощающие нефть и нефтепродукты;

Надувные – позволяющие быстро разворачивать их в акваториях;

Тяжелые надувные – ограждающие танкер у терминала.

После того как разлив нефти удается локализовать, последующим этапом станет ликвидация пролива.

Методы ликвидации разливов нефтепродуктов и сырой нефти

Известно несколько методов локализации разлива нефтепродуктов: термический, механический, биологический, и физико–химический. Главный метод ликвидации пролива нефти - это механический сбор нефтепродуктов. Большая эффективность данного метода достигается в самом начале разлива, в связи с тем, что толщина нефтяного слоя остается большой. Механический сбор затруднен при большой площади распространения, при небольшой толщине слоя нефти, и под воздействием ветра происходит постоянное движение поверхностного слоя.

Термический метод , применяется при большой толщине нефтяного слоя после загрязнения до начала образования эмульсий с водой. Метод основан на выжигании слоя нефти. Он достаточно хорошо сочетается с другими методами ликвидации разливов.

Механический метод . Примером такого способа может послужить сбор нефтепродукта скиммерами.

Нефтесборные устройства, или скиммеры, предназначены для сбора нефти непосредственно с поверхности воды.

Физико-химический метод использует диспергенты и сорбенты и эффективен в случае, когда механический сбор невозможен при маленькой толщине пленки и когда разлившееся пятно нефтепродуктов грозит реальной угрозой экологически уязвимым районам.

Биологический метод применяется после физико-химического и механического методов при толщине слоя не менее 0,1мм. Технология очистки нефтезагрязненной воды и почвы – биоремедитация, в ее основе лежит использование специальных, микроорганизмов на основе окисления углеводорода или биохимических препаратов.

Выбирая метод ликвидации разлива нефтепродуктов нужно помнить следующее: при проведении работ по устранению аварии главным является фактор времени, стараясь не нанести наибольший экологический ущерб, чем уже существующий разлив нефти.

Одна из ключевых проблем обеспечения промышленной и пожарной безопасности - установление минимальных безопасных расстояний между источниками аварий и соседними сооружениями и объектами. Требования к обоснованию минимальных безопасных расстояний, в том числе на основе моделирования и расчета последствий аварий, содержатся в ряде нормативных правовых документов.

Особенно актуальна задача определения минимальных безопасных расстояний в связи с развитием системы магистральных трубопроводов (МТ). Анализ аварийности показывает, что аварии с гибелью людей на российских МТ достаточно редки, однако в условиях их прокладки вблизи населенных пунктов, объектов производственной и транспортной инфраструктуры не исключена возможность поражения людей при аварии. Особый резонанс вызывают крупные промышленные аварии с групповой гибелью людей. Ниже представлены масштабы и особенности некоторых крупных аварий на МТ:

Под минимальным безопасным расстоянием понимается минимальное допустимое расстояние от оси линейной части магистрального трубопровода до соседних зданий, строений, сооружений, населенных пунктов, транспортных путей, устанавливаемое в целях обеспечения безопасности людей.

  • 1 июля 1959 г. Мексика, штат Веракрус, Коацакоалькос. Взрыв и пожар на нефтепроводе. Погибли 12 человек, более 100 ранены.
  • 19 июля 1960 г. США, штат Висконсин, Меррил. При проведении земляных работ произошла разгерметизация газопровода. Утечка газа с последующим взрывом стали причиной гибли 10 человек.
  • 4 марта 1965 г. США, штат Луизиана, Натчиточес. Взрыв на 32-дюймовом газопроводе компании «Теннесси». Погибли 17 человек, 9 получили ранения. Причина - разгерметизация газопровода из-за коррозионного растрескивания под напряжением.
  • 29 мая 1968 г. США, штат Джорджия, Хэпвиль. Бульдозер задел дюймовый газопровод у детского сада, в результате произошли взрыв и пожар. Семь детей и двое взрослых погибли, трое детей получили серьезные ранения.
  • 4 июня 1989 г. СССР, Уфа. Авария на магистральном продуктопроводе (ВЫ 700, Рра6 = 3,5 -г 3,8 МПа) под Уфой на перегоне между станциями Казаяк и Улу-Теляк на 1710-м км Куйбышевской железной дороги с выбросом и воспламенением паров широкой фракции легких углеводородов (ШФЛУ). Расстояние дрейфа облака 900-1350 м. В зоне взрыва оказались два пассажирских поезда. Погибли 573 человека, более 600 получили травмы различной степени тяжести. В районе взрыва образовалась зона сплошного завала леса площадью 2,5 км2. В радиусе до 15 км от места взрыва в домах населенных пунктов выбиты стекла, частично разрушены рамы и шиферные фронтоны.
  • 17 октября 1998 г. Нигерия, штат Дельта, Джесси. Произошел взрыв на трубопроводе Нигерийской национальной нефтяной корпорации, перекачивающем бензин. Причина аварии - умышленное повреждение трубопровода. Жители ближайших деревень пришли к разрушенному трубопроводу для сбора разлившегося топлива. Произошли взрыв и пожар, в результате которых погибли около 1200 человек. Пожар удалось потушить только 23 октября.
  • 10 июля 2000 г. Нигерия, штат Дельта, Джесси. Разгерметизация трубопровода с последующим взрывом. Погибли около 250 человек.
  • 16 июля 2000 г. Нигерия, штат Дельта, Варри. При разрушении трубопровода и последующем взрыве погибли 100 жителей деревни.
  • 19 августа 2000 г. США, штат Нью-Мексико, Карлсбад. Воспламенение газа при разрыве 30-дюймового газопровода привело к гибели 12 человек, находившихся в кемпинге в 180 м от места аварии. На месте разрыва газопровода образовался котлован 16 м в ширину и 24 м в длину. 15-метровый участок трубы был вырван и выброшен из котлована в виде трех осколков (наибольший - на расстояние 87м). Причина аварии - внутренняя коррозия.
  • 30 ноября 2000 г. Нигерия, штат Лагос. Утечка нефтепродукта из трубопровода с последующим воспламенением. Погибли около 60 жителей рыбацкой деревни.
  • 19 июня 2003 г. Нигерия, штат Абия. При попытке хищения нефтепродукта из трубопровода произошел взрыв. Погибли 125 жителей близлежащей деревни.
  • 30 июля 2004 г. Бельгия, Брюссель. Утечка и взрыв газа на магистральном газопроводе (МГ) (ОЫ 900) газоперерабатывающего завода Ви1а§аг в 40 км от Брюсселя. Цепь взрывов уничтожила две фабрики, оставив между заводами большой кратер. Тела погибших и обломки оборудования были разбросаны в радиусе 500 м от места катастрофы. На расстоянии до 150 м выгорели все припаркованные автомобили, растительность выгорела на расстоянии до 250 м. Действие взрывной волны ощущалось на расстоянии до 10 км от места аварии. Погибли 24 человека (на расстоянии до 200 м), более 120 получили серьезные ожоги и ранения. Большинство погибших - полицейские и пожарные, прибывшие на место утечки по тревоге.
  • 17 сентября 2004 г. Нигерия, штат Лагос. При попытке хищения нефтепродукта из трубопровода произошел взрыв. Погибли десятки людей.
  • 12 мая 2006 г. Нигерия, штат Лагос. Произошел взрыв на нефтепроводе при попытке хищения нефти. Погибли около 150 человек.
  • 26 декабря 2006 г. Нигерия, штат" Лагос. Вандальные действия привели к взрыву нефтепровода. Погибли более 500 человек.
  • 16 мая 2008 г. Нигерия, штат Лагос. Бульдозером поврежден подземный нефтепровод. В результате взрыва и последующего пожара погибли около 100 человек.
  • 19 декабря 2010 г. Мексика, Сан Мартин Тексмелукан де Лабастида. Взрыв на насосной станции Ре1го1еок Мех1сапо8 привел к разгерметизации нефтепровода с последующим истечением горящей нефти. Погибли 27 человек, 52 были
  • ранены. Взрыв вызван неудачной попыткой врезки в нефтепровод в целях хищения нефти.
  • 12 сентября 2011 г. Кения, Найроби. В промышленном районе Лунга Лунга разгерметизировался трубопровод Кенийской трубопроводной компании, перекачивающий бензин, дизельное и реактивное топливо. Часть топлива попала в реку. Люди в соседних густонаселенных трущобах Синая начали собирать вытекающее топливо, оно взорвалось, образовав гигантский огненный шар. Пожар распространился на близлежащие трущобы. Источник воспламенения - искры с горящей свалки. Около 100 человек погибли, 116 были госпитализированы с различной степенью ожогов. Тела погибших и фрагменты построек были найдены в 300 м от места взрыва.

Среди перечисленных аварий обращают на себя внимание многочисленные случаи взрывов при аварийной разгерметизации на магистральных нефте-и продуктопроводах (МН) в Мексике, Нигерии и Кении, что, очевидно, связано с теплым климатом, способствующим при утечках образованию топлив-но-воздушных смесей (ТВС) из-за повышенной температуры окружающей среды. Большое количество пострадавших обусловлено напряженными социальными условиями близпроживающего населения.

Методические подходы к установлению минимальных безопасных расстояний условно можно разделить на три направления, основанные на использовании: фактических данных о зафиксированных при авариях зонах поражения («апостериорный» подход); расчетов максимальных размеров зон поражения; количественной оценки риска (КОР) аварий.

Достоверность данных в первом случае базируется на представительности статистических данных об известных крупных авариях на МТ, во втором - на расчете и моделировании последствий аварий с наиболее протяженными зонами поражения, в третьем - на учете вероятности возникновения аварии с определенными последствиями и использовании критериев приемлемого (допустимого) риска. В любом из этих подходов могут использоваться «коэффициенты запаса», компенсирующие неполноту существующих знаний и представлений.

Рассмотрим для каких видов МТ (газо-, нефтепроводы, трубопроводы СУГ) и в каких случаях преимущественно используются обозначенные выше подходы к установлению минимальных безопасных расстояний.

Наиболее распространенным и устоявшимся способом является определение безопасных расстояний исходя из опыта происшедших аварий на аналогичных объектах. Этот подход частично (совместно с моделированием последствий) реализован в пп. 3.16, 12.3 СНиП 2.05.06-85* «Магистральные трубопроводы». Анализ происшедших достаточно многочисленных аварий на МГ показывает, что размеры зон поражения людей (разлет осколков, тепловое излучение от горения струй) лежат в диапазоне от 100 до 350 м от оси трубы и определяются в первом приближении диаметром и давлением в трубопроводе. В данном случае достаточно представительная статистика аварий не требует, как правило, применения дополнительных «коэффициентов запаса» по безопасности, и минимальные безопасные расстояния принимаются эквивалентными максимальным наблюдавшимся зонам поражения

Опыт аварии под Уфой в 1989 г. обозначил повышенную опасность выбросов сжиженных углеводородных газов (СУГ), связанную с мгновенным вскипанием перегретых жидкостей и образованием протяженных облаков тяжелых газов, способных распространяться у поверхности земли с сохранением способности к воспламенению на расстоянии в несколько километров. Следствие этой катастрофы - десятикратное увеличение нормативных значений безопасных расстояний1 от МТ СУГ до объектов с присутствием людей.

Второй способ установления минимальных безопасных расстояний для МТ - расчет зон поражения при максимальной гипотетической аварии (МГА) с рассмотрением конкретного участка трубопровода (профиль трассы, задвижки и т.д.), свойств транспортируемых углеводородов, технологических параметров перекачки, условий окружающей среды и действий по локализации и ликвидации аварии. «Коэффициент запаса» по безопасности в этом случае неявно заложен в допущениях и предположениях о возникновении и развитии аварии и определяется степенью пессимистичности при выборе рассчитываемого сценария МГА.

Данный детерминистский подход основан на расчете сценария с полным разрушением МТ и максимальной дальностью распространения поражающих факторов при аварийных выбросах опасных веществ. В табл. 1 приведены примеры рассчитанных по программному комплексу ТОКСИ+ зон смертельного поражения человека при авариях на отдельных участках МТ по данным деклараций промышленной безопасности и отчетам по КОР.

Среди основных поражающих факторов, характерных для аварий на МГ, наиболее значимым по размерам зон поражения является термическая радиация от горящих струй газа (см. табл. 1).

При расчете максимальной зоны поражения на МН и МТ СУГ принимается максимальный размер утечки для рассматриваемого участка трассы, консервативно оценивается площадь разлива нефти (нефтепродукта) и рассчитывается расстояние, на которое может дрейфовать облако их паров, сохраняя способность к воспламенению.

Таблица 1

Последствия аварии

Поражающий фактор

Зона действия поражающего фактора, м

МГОЫ600, Р=5,7МПа

Расширение газа

Барическое (Воздействие^

Механическое воздействие

Горение струи

Термическое воздействие

Пожар в котловане

МНОЫ1000, Р=6,ЗМПа

Пожар пролива

Термическое воздействие

Воспламенение облака ТВС

МТ ШФЛУ ОМ 700, Р = 5,5 МПа

Пожар пролива

Термическое воздействие

Воспламенение облака ТВС

Горение струи

Рассе­яние опасных веществ в атмосфере рассчитывается по Методическим указаниям по оценке последст­вий аварийных выбросов опасных веществ (РД-03-26-2007) при наихудших условиях рассеяния в при­земном слое атмосферы. В качестве консервативной оценки минимального безопасного расстояния при расчете дрейфа пожаровзрывоопасного облака принимается расстояние, на котором облако рас­сеивается до концентрации, равной половине ни­жнего концентрационного предела воспламенения (НКПВ), что учитывает неоднородность распреде­ления концентрации в облаке. При необходимости рассматриваются и возможность сгорания (взрыва) дрейфующего облака, и соответствующие данному процессу зоны поражения с учетом допущений.

Основанный на анализе последствий аварии подход также применим для определения безопа­сных расстояний для «типового» участка МГ, так как расстояния, установленные по расчетам терми­ческого поражения от горящих струй газа, незна­чительно отличаются от расстояний, зарегистриро­ванных при авариях, а результаты расчета по модели имеют меньший набор исходных данных и при­нятых допущений по сравнению с моделями расчета последствий аварий на МН и МТ СУГ.

Третий способ обоснования минимальных без­опасных расстояний основан на использовании КОР, позволяющей оценить возможность возник­новения аварии, в том числе МГА.

На рассматриваемом участке трассы МТ рассчи­тываются варианты выброса для всего диапазона размеров дефектных отверстий (от свища до гильотинного разрыва трубопровода) и все возможные исходы аварий на основе дерева событий.

При моделировании распределения в пространстве зон действия поражающих факторов учитываются вероятность возникновения аварии и условная вероятность развития аварии по тому или иному сценарию. Критерии поражения человека определяются по пробит-функции.

В качестве безопасного принимается расстояние, на котором рассчитанное значение потенциального риска гибели человека не превышает уровня, заданного в качестве допустимого.

Согласно п. 4.2.6 Методических указаний по проведению анализа риска опасных производственных объектов (РД 03-418-01) критерии приемлемости риска аварии определяются на основе нормативных правовых документов (например, для МТ горючих веществ целесообразно учитывать критерии) или обосновываются в проектной документации, исходя из опыта эксплуатации аналогичных объектов.

Практика использования КОР по модели, основанной на, при декларировании и разработке специальных технических условий показала, что размер зон поражения и тяжесть последствий при авариях на МТ, определяющие минимальные безопасные расстояния, связаны с технологическими параметрами трубопровода (диаметр, давление), характеристиками перекачиваемого продукта, в том числе пожаро-, взрывоопасными или токсическими свойствами, агрегатным состоянием в трубопроводе (газ, жидкость, в том числе сжиженный газ); особенностями окружающей местности (рельеф); метеоусловиями (температура воздуха, скорость и направление ветра, стратификация (устойчивость) атмосферы); уязвимостью объектов воздействия (наличие селитебных зон, производственных объектов, транспортной инфраструктуры); эффективностью системы обнаружения и ликвидации утечки, действий персонала.

Отметим, что значимость указанных факторов зависит от вида МТ (МГ, МН или МТ СУГ).

Например, основными факторами, определяющими сценарии развития аварий на МГ и зоны поражения людей являются: несущая способность грунта, давление в месте разрыва, расположение места разрыва относительно компрессорных станций и линейных запорных кранов, а метеорологические факторы (скорость и направление ветра, класс стабильности атмосферы, влажность воздуха) влияют незначительно.

Напротив, для МТ СУГ, наибольшая аварийная опасность которых определяется возможностью дрейфа и воспламенения облаков ТВ С, размеры зон поражения существенно зависят от метеорологических факторов в момент аварии.

Также отметим слабое влияние расстояний между узлами запорной арматуры на рассчитанные максимальные зоны поражения при авариях

Расчеты минимальных безопасных расстояний с использованием методологии количественного анализа риска аварий показывают, что для современных продуктопроводов СУГ размеры аварийно-опасных зон для пребывания людей не превышают 1,4 км, тогда как детерминистские расчеты дают оценку размеров зон смертельного поражения до 2,4 км. Соотношения размеров зон, рассчитанных по разным подходам, зависят от вероятности возникновения аварии, рассматриваемой в качестве МГА.

Таким образом, из анализа нормативной базы, аварий и результатов расчета последствий аварийных выбросов опасных веществ и оценки риска аварий на МТ можно сделать следующие выводы:

1. Установлено влияние на размеры зон поражения и безопасных расстояний технологических параметров трубопровода, характеристик перекачиваемого продукта, особенностей окружающей местности, метеоусловий и иных факторов. Значимость указанных факторов зависит от вида МТ (МГ, МН или МТ СУГ), поэтому для решения практических задач необходимы анализ опасности конкретных участков МТ и обоснованный выбор критериев безопасности.

2. Применение методологии количественной оценки риска позволяет обосновывать минимальные безопасные расстояния, размер которых может быть существенно меньше нормативных или определенных зон поражения при МГА.

3. Представленные результаты предлагается использовать при разработке нормативных документов по безопасности объектов трубопроводного транспорта, в том числе законопроекта - Технического регламента о безопасности магистральных трубопроводов для транспортировки жидких и газообразных углеводородов и Правил безопасности для магистральных трубопроводов

Таблица 3

Параметры трубопро­вода

Район проклад­ки трубопровода

Расстояние по СНиП 2.05.06-85* (до населенных пунктов), м

Зона действия поражающих факторов при МГА, м

Расстояние, м, на кото­ром достигается потен­циальный риск гибели человека, год- 1

ОМ 250, Р а6 = 1 ,8 МПа

Самарская обл.

ОМ 500, /> ра6 = 3,3 МПа

Ямало-Ненец­кий автономный округ

Не определено (для продуктопроводов ОЫ 400 - 3000-5000 м)

ОМ 700, Р раб = 5,5МПа

Ханты-Мансий­ский автоном­ный округ

авария на трубопроводе, связанная с выбросом и выливом под давлением опасных химических или пожаровзрывоопасных веществ, приводящая к возникновению техногенной чрезвычайной ситуации. В зависимости от вида транспортируемого продукта выделяют аварии на газопроводах, нефтепроводах и продуктопроводах.


EdwART. Словарь терминов МЧС , 2010

Смотреть что такое "" в других словарях:

    Авария на магистральном трубопроводе - авария на трассе трубопровода, связанная с выбросом и выливом под давлением опасных химических и пожаровзрывоопасных веществ, приводящая к возникновению техногенной чрезвычайной ситуации [ГОСТ Р 22.0.05 94]. Источник …

    авария на магистральном трубопроводе - авария на трубопроводе Авария на трассе трубопровода, связанная с выбросом и выливом под давлением опасных химических или пожаровзрывоопасных веществ, приводящая к возникновению техногенной чрезвычайной ситуации. Примечание В зависимости от вида… … Справочник технического переводчика

    авария на магистральном трубопроводе - авария на трассе трубопровода, связанная с выбросом и выливом под давлением опасных химических или пожаровзрывоопасных веществ, приводящая к возникновению техногенной чрезвычайной ситуации. В зависимости от вида транспортируемого продукта… … Российская энциклопедия по охране труда

    Авария на магистральном трубопроводе - авария натрассе трубопровода, связанная с выбросом и выливом под давлением опасных химических или пожаровзрывоопасных веществ, приводящая к возникновению ЧС. В зависимости от вида транспортируемого продукта выделяют аварии на газопроводах,… … Гражданская защита. Понятийно-терминологический словарь

    авария - 3.4 авария: Разрушение сооружений и (или) технических устройств, применяемых на опасном производственном объекте; неконтролируемые взрывы и (или) выбросы опасных веществ . Источник: ГОСТ Р 52734 2007: Устройства пломбировочные для опасных… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 22.0.05-94: Безопасность в чрезвычайных ситуациях. Техногенные чрезвычайные ситуации. Термины и определения - Терминология ГОСТ Р 22.0.05 94: Безопасность в чрезвычайных ситуациях. Техногенные чрезвычайные ситуации. Термины и определения оригинал документа: 3.1.3 авария: Опасное техногенное происшествие, создающее на объекте, определенной территории или… … Словарь-справочник терминов нормативно-технической документации

    ОР 06.00-74.20.55-КТН-002-1-01: Регламент о порядке расследования, оформления документации и организации контроля за ликвидацией последствий аварий, связанных с экологическим ущербом окружающей среде - Терминология ОР 06.00 74.20.55 КТН 002 1 01: Регламент о порядке расследования, оформления документации и организации контроля за ликвидацией последствий аварий, связанных с экологическим ущербом окружающей среде: Авария опасное техногенное… … Словарь-справочник терминов нормативно-технической документации

    Методическое руководство по оценке степени риска аварий на магистральных нефтепроводах - Терминология Методическое руководство по оценке степени риска аварий на магистральных нефтепроводах: Авария разрушение сооружений и (или) технических устройств, применяемых на опасном производственном объекте, неконтролируемые взрыв и (или)… … Словарь-справочник терминов нормативно-технической документации

    Аварии на газопроводах в России в 2007‑2010 гг - 2010 год 26 апреля на Дмитровском шоссе Москвы произошло ЧП на газопроводе. Во время опрессовки трубы из нее вылетела заглушка. В результате погиб один человек, были повреждены 83 автомобиля. На месте ЧП образовалась воронка диаметром 3 метра. 13 … Энциклопедия ньюсмейкеров

    Крупные аварии на газопроводах в России в 2007-2012 годах - 2012 26 декабря произошел порыв газопровода диаметром 325 миллиметров, питающего Сочи. На месте порыва газ загорелся, высота пламени достигала трех метров. Подача газа на аварийном участке была прекращена. На время ремонта поврежденного… … Энциклопедия ньюсмейкеров

Все знают, что Россия является нефтедобывающей страной. Однако далеко не всем известно, что, помимо добычи, наши нефтепромыслы славятся также существенными потерями, возникающими в процессе извлечения черного золота из земных недр. Причем количество аварийных разливов нефти и утечек нефтепродуктов ежегодно увеличивается не пропорционально росту добычи, а существенно быстрее.

Так, по информации Greenpeace, потери нефтяного сырья при добыче и транспортировке в России составляют около 1%, а, например, по данным НП "Центр экологии ТЭК" - все 3,5-4,5%. Соответственно при текущем уровне добычи в 510 млн т в год потери составляют от 18 до 23 млн т ежегодно, в денежном выражении - от 14,2 млрд до 17,2 млрд долл.

К сожалению, известные технологии борьбы с крупномасштабными разливами нефти пока малоэффективны. Согласно данным официальной статистики, на территории России ежегодно происходит более 20 тыс. аварий, связанных с добычей нефти. Сколько их в действительности, сложно себе представить. Исходя из вышесказанного, можно прогнозировать, что в перспективе загрязнение нефтью будет только усиливаться - с ростом ее транспортировки по морю и развитием добычи на шельфах.

Откуда течет нефть?

Осложняет ситуацию также то, что понять, сколько выливается нефти, по крайне мере на суше, невозможно. Никто толком не ведет учет нефтяных разливов, а главное - учет количества вытекшей нефти. Регулирующий государственный орган - Росприроднадзор - располагает данными, предоставленными организациями и добывающими компаниями, о таких происшествиях и об устранении их последствий. Однако, по свидетельствам общественных экологических организаций, эти данные не являются объективными, поскольку показатели сильно занижены. Компании не хотят выплачивать компенсации и стремятся уменьшить цифры или же устраняют последствия разливов лишь частично, например только в районе порыва трубы, то есть исключительно в поле зрения проверяющих организаций.

К тому же официальная статистика фиксирует только те разливы, при которых выливается более 8 т нефти, а разлив до 7 т включительно считается просто инцидентом, который не нужно декларировать и о котором можно не оповещать власти.

Больше всего нефти разливается при ее транспортировке - перекачке по трубопроводам. В собственности государства находится более 70 тыс. км трубопроводов, длину остальных - межпромысловых - подсчитать крайне сложно, но можно с уверенностью сказать, что она существенно превышает "государственную" часть. Только в Западной Сибири длина межпромысловых трубопроводов превышает 100 тыс. км. И большинство аварий происходит именно на них. Наиболее распространенной причиной (около 90% случаев) является прорыв трубы, вызванный коррозией и изношенностью.

Одна из последних крупных аварий на трубопроводе произошла в октябре 2011г. на Федоровском месторождении в районе Сургута. Тогда фонтан нефти высотой более 10 м бил двое суток. Аварийным бригадам пришлось откачать более 40 куб. м разлившейся нефти. При этом в окружном управлении Росприроднадзора ущерб от этой аварии оценили в 7 млн руб.

Еще одной важной причиной, приводящей к серьезным авариям, является механическое повреждение трубы. Чаще всего это происходит из-за так называемых несанкционированных врезок, когда мошенники пытаются украсть нефть у государства или частных компаний и использовать ее для производства нефтепродуктов в кустарных условиях. Однако и здесь существует своя специфика. Большинство несанкционированных врезок приходится все же на нефтепродуктопроводы. Понятно, что воровать уже готовую качественную продукцию значительно выгоднее, чем неподготовленное сырье.

Если говорить о мировой практике, то наиболее крупные и масштабные по своим негативным последствиям разливы случаются на воде. Так, по данным британской консалтинговой фирмы TINA Consultants, которая проводила соответствующее исследование, за период с 1995 по 2005г. на каждый 1 млн т добытой или хранимой нефти приходилось 0,94% утечек, в результате которых в различные водоемы попадало 3,06 т нефти или нефтепродуктов.

В России самая крупная катастрофа на воде случилась 11 ноября 2007г., когда во время шторма в Керченском проливе в Азовском и Черном морях за один день затонули четыре судна, еще шесть сели на мель, в том числе два нефтеналивных танкера, получивших серьезные повреждения. Тогда из разломившегося танкера "Волгонефть-139" в море вылилось более 2 тыс. т мазута. Росприроднадзор оценил экологический ущерб от этой аварии в 6,5 млрд руб., причем только ущерб от гибели птицы и рыбы в Керченском проливе оценивался приблизительно в 4 млрд руб.

Самой крупной мировой катастрофой на сегодняшний день признана авария на нефтяной платформе Deepwater Horizon, произошедшая 20 апреля 2010г. в 80 км от побережья штата Луизиана в Мексиканском заливе на месторождении компании ВР. Во время взрыва и пожара на платформе погибли 11 и пострадали 17 человек. За 152 дня борьбы с последствиями аварии в Мексиканский залив вылилось около 5 млн барр. нефти, нефтяное пятно достигло 75 тыс. кв. км.

Произошедшее в Мексиканском заливе, на российский взгляд, кажется чисто американской проблемой. Однако случившееся затрагивает не только США, считает главный редактор научно-популярного и образовательного журнала "Экология и жизнь" Александр Самсонов. Если бы ситуацию не удалось взять под контроль, то масштабы последствий могли бы быть катастрофическими если не для всего мира, то по крайней мере для Атлантического океана точно.

"Слава богу, что природа сама справилась с катастрофой и произошла биоремедиация (комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов - растений, грибов, насекомых, червей и других организмов). Тем не менее опасность все еще сохраняется, поскольку авария произошла в северных морях. А они наиболее уязвимы по сравнению с южными", - отмечает А.Самсонов. "Если упустить контроль над ситуацией в Мексиканском заливе, а она там пока неоднозначная, то пострадают биоразнообразие и климатическая устойчивость Гольфстрима. В этом случае загрязнение, попавшее в Гольфстрим, "скоростным экспрессом" отправится к берегам Европы, что приведет к дестабилизации экологической и климатической систем всех северных морей", - считает эксперт.

Бомба замедленного действия

По данным руководителя энергетической программы Greenpeace Владимира Чупрова, при попадании в почву всего лишь 1 кубометра нефти потенциально возможная площадь загрязнения поверхностного слоя грунтовых вод может составить более 5 тыс. кв. м. Но, к сожалению, систематических данных о загрязнении подземных вод немного. Имеются данные, свидетельствующие, в частности, что в подземных водах Среднеобской нефтегазоносной провинции (Западная Сибирь) в концентрациях, превышающих допустимые, обнаружены нефть и нефтепродукты, фенолы и другие поллютанты, характерные для нефтедобывающего производства.

Проведенные исследования выявили, что у жителей, вынужденных контактировать с нефтепродуктами, выброшенными в окружающую среду, наблюдается резкий рост заболеваемости. В основном это инфекционные болезни, "прилипающие" к людям из-за ослабления иммунитета, болезни органов дыхания и нервной системы.

Наиболее уязвимыми являются питьевая вода и продукты питания, загрязняемые углеводородами еще на стадии производства - прямое следствие бедственного состояния почвенно-грунтовых подземных вод в регионах нефтедобычи. Как отмечают эксперты, самый неблагоприятный район - Нижневартовский, количество случаев в нем только онкологических заболеваний в 2-3 раза выше, чем во всей остальной России!

Разливы нефти на воде приводят к гибели рыбы, а также морских животных, включая китов и дельфинов. Нефть является смертельной не только для рыб и других морских обитателей, но и для птиц, гнездящихся у воды. Известный факт: для того чтобы отмыть только одну птицу, покрытую нефтяной пленкой, требуются два человека, 45 минут времени и 1,1 тыс. л чистой воды, как подчитали в свое время экологи из Greenpeace.

Арктика: последнее белое пятно Земли

По сравнению со многими районами нашей страны, Арктика считается относительно чистым регионом. Но и здесь есть "горячие точки", в которых масштабы деградации окружающей среды достигают опасных значений, а уровни загрязнения значительно превышают допустимые нормы, отмечает руководитель энергетической программы Greenpeace В.Чупров. По его словам, в Арктической зоне РФ выявлено более сотни таких точек. Часть из них связана с деятельностью нефтегазового комплекса, в том числе Кандалакшский залив, Обская губа, Ямбургское месторождение, Уренгойское месторождение и ряд других промысловых зон.

С прискорбием надо отметить, что загрязнение нефтяными выбросами рек Арктического бассейна уже сейчас достигло высокого уровня. С речным стоком в моря Северного Ледовитого океана ежегодно выносится несколько сотен тысяч тонн нефтепродуктов. Только в Обь (Западная Сибирь) ежегодно попадает около 100 тыс. т нефти. В результате концентрация загрязняющих веществ на многих участках акватории Баренцева, Белого, Карского морей и моря Лаптевых в 2-3 раза превышает норму.

Кроме того, промышленное освоение нефтяных месторождений ведет к деформации грунтов, в том числе к термоэрозии в зонах распространения вечной мерзлоты, отмечает В.Чупров. Особенно это проявляется вдоль линейных сооружений, в том числе нефте- и газопроводов. По оценкам некоторых экспертов, при сооружении магистрального трубопровода на каждые 100 км трассы приходится 500 га поврежденных земельных угодий.

А после нас хоть потоп

Нарисованная экологами картина, мягко скажем, не вселяет оптимизма. К сожалению, обозримые перспективы еще более пессимистичны. Связано это с тем, что в России нет должной системы контроля за авариями на нефтепромыслах, исследований их последствий, современных методов борьбы с ними. Не существует и законодательства, соответствующего современным стандартам. А ведь в скором времени должны заработать проекты, связанные с континентальным шельфом северных морей, то есть ожидается выход отечественной нефтедобычи в Мировой океан. Сетования экологов по этому поводу были услышаны, и рассмотрению данной проблемы было посвящено целое заседание совета при президенте России.

После заседания совета, 20 марта 2012г., министр природных ресурсов и экологии РФ Юрий Трутнев дал поручение Росприроднадзору провести рейдовые проверочные мероприятия с участием общественности по выявлению источников загрязнения рек Арктического бассейна нефтепродуктами и нефтесодержащими веществами. Контрольно-надзорные мероприятия поручено провести в том числе в период весеннего половодья. Особое внимание в рейдовых проверках, согласно распоряжению министра, будет уделяться основным рекам бассейна Северного Ледовитого океана - Оби, Иртышу и Енисею. В ходе проверок будут обследоваться территории вокруг внутрипромысловых, межпромысловых и магистральных нефтепроводов, среди которых могут оказаться объекты, находящиеся в аварийном состоянии и создающие экологические риски.

По окончании проверки Росприроднадзор должен представить предложения по снижению негативного воздействия на водные объекты и взысканию ущерба от нефтедобычи (хранения, транспортировки и переработки нефтепродуктов) в случае выявления фактов загрязнения. По результатам контрольных мероприятий также будет выполнен анализ полученных данных, который позволит разработать комплекс мер по улучшению экологической ситуации не только в бассейнах рек, впадающих в Северный Ледовитый океан, но и Арктики в целом.

Как говорится, лиха беда начало. Безусловно, одной проверкой комплекс экологических проблем, существующий в отечественной нефтедобыче, не разрешить. Тем не менее сложа руки сидеть - смерти подобно, и то, что государственные органы взялись наконец за решение вопроса, не может не радовать.

Елена Забелло, РБК