Аварии на магистральных трубопроводах примеры. Виды аварий на магистральном газопроводе

РД 153-39.4-114-01. Правила ликвидации аварий и повреждений на магистральных нефтепроводах. Согласно РД, все отказы на МН делятся на аварии и инциденты.

Аварией считается внезапный вылив или истечение нефти в результате полного разрушения или частичного повреждения нефтепровода, резервуаров или другого оборудования, сопровождаемое одним или несколькими следующими событиями:

3. воспламенение нефти или взрыв ее паров;

4. загрязнение рек и других водоемов сверх пределов, установленных на качество воды;

5. утечка нефти более 10м 3 .

Инцидентом на магистральном нефтепроводе считается отказ или повреждение оборудования на объектах МН, отклонение от режимов технологического процесса, нарушение законодательных и правовых актов РФ и нормативных документов (устанавливающих правила ведения работ), которые могут сопровождаться утечками нефти менее 10м 3 без загрязнения водотоков. Инцидент происходит без признаков событий, описанных при аварии, но требует проведения ремонтных работ для восстановления дальнейшей безопасной эксплуатации МН.

Аварией на магистральном газопроводе считается неконтролируемый выброс газа в атмосферу или помещения КС, ГРС или автомобильных газонаполнительных станций (АГНКС), которые сопровождаются разрушением или повреждением газопровода или других его объектов, а также одним из следующих событий:

1. смертельный травматизм людей;

2. травмирование с потерей трудоспособности;

3. воспламенение газа или взрыв;

4. повреждение или разрушение объектов МГ;

5. потери газа более 10000м 3 .

Аварийной утечкой на МГ считается неконтролируемый выход транспортируемого газа в атмосферу, помещения КС, ГРС или АГНКС, без признаков событий, описанных выше, но требующий проведения ремонтных работ для обеспечения дальнейшей безопасной эксплуатации газопровода.

Причины аварий:

1. Нарушение требований технологии и государственных стандартов в процессе производства труб.

2. Отклонения от норм проектирования и строительства трубопроводов.

3. Несоблюдение правил эксплуатации трубопроводов.

4. Влияние природных явлений.

Организационно-технические мероприятия при проведении аварийно-восстановительных работ.

Последовательность на нефтепроводах:

1. сооружение земляного амбара или другой емкости для сбора нефти;

2. подготовка ремонтной площадки и размещение на ней технических средств;



3. отключение средств ЭХЗ;

4. вскрытие аварийного участка и сооружение ремонтного котлована;

5. освобождение аварийного участка от нефти;

6. вырезка дефектного участка или наложение муфты;

7. герметизация (перекрытие) внутренней полости нефтепровода;

8. монтаж и вварка новой катушки;

9. заварка отверстий для отвода нефти;

10. контроль качества сварных швов;

11. пуск нефтепровода в эксплуатацию;

12. изоляция отремонтированного участка нефтепровода;

13. включение средств ЭХЗ;

14. засыпка нефтепровода и восстановление обвалования.

Для устранения неполных разрывов поперечных стыков можно использовать двухстворчатые хомуты со свинцовой или резиновой прокладкой.

При небольших разрывах по основному металлу труб можно применять гладкие хомуты, которые привариваются к трубе.

При полном разрыве поперечных стыков, а т.ж. при разрывах продольных стыков труб поврежденные участки полностью удаляют, а на их место вваривают патрубки из труб того же размера. Для вырезки поврежденных участков используют безогневые технологии.

Последовательность на газопроводах:

1. отключение аварийного участка и освобождение его от газа;

2. отключение средств ЭХЗ;

3. земляные работы по сооружению ремонтного котлована;

4. вырезка отверстий в газопроводе для установки резиновых шаров;

5. установка резиновых шаров для изоляции полости МГ на ремонтируемом участке;

6. вырезка поврежденного участка;

7. вварка новой катушки;

8. проверка качества швов физическими методами контроля;

9. извлечение резиновых шаров;

10. заварка отверстий;

11. вытеснение воздуха из аварийного участка;

12. испытание швов отремонтированного участка под давлением 1 МПа;

13. нанесение изоляции;

14. Испытание трубопровода при рабочем давлении;

15. включение средств ЭХЗ;

16. засыпка трубопровода.

Свищи ликвидируются путем заварки.

Ущерб от последствий аварии на трубопроводе "Унеча - Вентспилс" может исчисляться миллиардами рублей. В Министерстве природных ресурсов и охраны окружающей среды Беларуси считают, что ущерб от последствий аварии на российском трубопроводе "Унеча - Вентспилс" будет исчисляться в миллиардах рублей. Об этом в интервью БелаПАН сообщил первый заместитель министра природы Александр Апацкий.

Вместе с тем, по его словам, еще не произведена полная оценка экологического ущерба, нанесенного аварией. "Специалисты ведут мониторинг почвы, в том числе в пойме рек после прохождения весеннего половодья. Кроме того, следует учесть возможность загрязнения почвы теми остатками нефтепродуктов, которые смоются дождями с поверхности земли и проникнут в почву", - сказал замминистра.

Напомним, что 23 марта в 18.20 на поле у деревни Быцево Бешенковичского района Витебской области была зарегистрирована утечка дизельного топлива из магистрального трубопровода диаметром 377 миллиметров, залегающего на глубине 0,8 метра. Аварию удалось локализовать в 23.00.

По словам А.Апацкого, подсчет экологического ущерба от аварии может завершиться 6-8 апреля. "Загрязнены сельскохозяйственные угодья в районе аварии, мелиоративный канал, реки Улла и частично Западная Двина. Авария оставила после себя небольшие пленочные загрязнения поверхностных вод, берегов и речного дна", - сказал замминистра.

Он сообщил, что согласно предварительным данным владельца нефтепровода - российского предприятия "Западтранснефтепродукт" компании "Транснефтепродукт" - объем утечки дизельного топлива составил примерно 120 тонн. "Однако для подсчета объема утечки нефтепродуктов мы должны получить от владельца трубопровода данные по объему дизтоплива, извлеченного из грунта и поверхностных вод", - сказал А.Апацкий.

По его словам, предстоит очистить мелиоративный канал, куда попала основная часть нефтепродуктов, а также провести профилактические работы на почве в районе прорыва трубопровода.

Как полагает А.Апацкий, владелец трубопровода будет оплачивать ущерб, нанесенный экологии Беларуси и Латвии. "Каждый день работ по преодолению последствий аварии увеличивает эту сумму", - подчеркнул замминистра. Вместе с тем, отметил он, уровень предельно допустимых концентраций загрязнителей в пограничном створе Западной Двины находится в рамках нормы - кроме пленки из нефтепродуктов, поступающей на латвийскую сторону.

Последствия аварии на трубопроводе Альметьевск-Нижний Новгород в Нижегородской области ликвидированы на 70%, - Верхне-Волжское БВУ

(НИА "Нижний Новгород" - Любовь Ковалева) Последствия аварии на трубопроводе Альметьевск-Нижний Новгород в Кстовском районе Нижегородской области ликвидированы на 70%. Произведен сбор нефтепродуктов, попавших в реку Шавка и водные объекты, расположенные ниже по течению. Об этом НИА "Нижний Новгород" сообщили в Верхне-Волжском бассейновом водном управлении.

По данным на 15 марта, содержание нефтепродуктов в реке Шавка превысило предельно допустимые концентрации для водоемов рыбохозяйственного значения в девять- 19 раз. Специалисты управления и регионального управления Роспотребнадзора 19 марта возьмут новые пробы воды в реке Шавка. Результаты будут известны 21 марта.

Как сообщалось ранее, утечка дизельного топлива из трубопровода произошла 12 марта около н.п. Слободское Кстовского района Нижегородской области. Утечка повлекла загрязнение нефтепродуктами почв и участка реки Шавки, являющейся притоком Волги. Аварийный участок трубопровода, который располагается под землей, является собственностью ОАО "Средневолжский транснефтепродукт". Верхне-Волжским бассейновым водным управлением совместно с территориальными органами Росприроднадзора и других ведомств осуществляется контроль за ликвидацией аварии. Организован вывоз загрязненного нефтепродуктами льда и снега на очистные сооружения для утилизации.

Произошло загрязнение нефтепродуктами части берега и реки Шавка. Поскольку водозаборы в месте загрязнения реки Шавка отсутствуют, попадание нефтепродуктов в реку Волга удалось предотвратить.

Напомним, что Нижегородская природоохранная прокуратура Волжской межрегиональной природоохранной прокуратуры возбудила уголовное дело по факту утечки нефтепродуктов по ст.247 УК РФ.

Большая часть загрязненной нефтью площади реки Вах в Нижневартовском районе ХМАО очищена. Уже ликвидировано 99% загрязнения водного объекта. Об этом сообщает Нижневартовский межрайонный отдел Росприроднадзора ХМАО.

Площадь оставшегося загрязнения, а также предварительная сумма нанесенного окружающей среде ущерба будет установлена после облета места происшествия 16 октября, отметили в Росприроднадзоре.

Напомним, нефтяное пятно на реке было обнаружено инспекторами Росприроднадзора 13 октября. Общая площадь загрязнения водного объекта составила 4,5 км, по предварительной информации, в воду попало две тонны нефти. По факту загрязнения возбуждено административное производство.

Аварии на трубопроводах и промплощадках, размыв обваловок шламовых амбаров, распыление капельной нефти при сгорании попутного газа на факелах - все это приводит к загрязнению нефтяными углеродами водоемов, почв, к деградации древесности. Основными направлениями природоохранной деятельности предприятий являются: строительство природоохранных объектов, контроль за состоянием природной среды и производственных объектов, профилактика аварий на трубопроводах, мероприятия по охране, рациональному использованием и восстановлению земель, водных ресурсов, атмосферного воздуха, экологического обучение.

Организация и проведение всех природоохранных работ входят в обязанности отделов по охране окружающей среды предприятий - недропользователей. Сейчас положение меняется в лучшую сторону: становится правилом разработка годовых и перспективных планов и мероприятий, их согласование с комитетами.

Практически все добываемое в Ханты-Мансийском округе углеводородное сырье транспортируется по трубопроводам. По территории округа проходит целая сеть нефте- и газопроводов. Общая протяженность магистральных трубопроводов составляет 9 тысяч километров. Помимо магистральных трубопроводов на территории округа действуют внутри и межпромысловые трубопроводы. Общая протяженность магистральных и внутри промысловых трубопроводов составляет более 60 тысяч километров.

Негативное влияние трубопроводного транспорта на окружающую природную среду достаточно велико и многообразно. Наиболее существенный ущерб окружающей среде причиняется авариями на продуктопроводах. Особую опасность загрязнения окружающей природной среды представляют места пересечения трубопроводов с водными объектами.

При прокладке и реконструкции трубопроводов изменяются инженерно- геологические условия, усиливаются термокарстовые процессы, образуются просадки и провалы, активизируются процессы заболачивания. В результате уничтожения естественных мест обитания и нарушения путей миграций уменьшается численность и видовой состав животного мира.

Основной причиной аварий на трубопроводах является коррозия металла.

Коррозия металла нефтесборных коллекторов и водоводов, как правило, ручейковый или питтинговый характер и обусловлена агрессивными физико-химическими свойствами водной фазы добываемой из недр продукции.

Фото: Крупные газовые и нефтяные трубопроводы в США. Красным обозначены трубопроводы, входящие в зону риска.

10 сентября 2010 года, в 6 часов вечера, в службу спасения г. Сан-Бруно, в штате Калифорния поступил тревожный звонок. По сообщениям перепуганных свидетелей, произошел ужасный взрыв на автомобильной заправке. Огонь полыхал с такой силой, что очевидцы подозревали авиакатастрофу, либо теракт. Память о случившемся 11 сентября давала о себе знать.

Почти час понадобился на то, чтобы установить истинную причину - ей оказался взрыв стального газопровода диаметром 76 см, принадлежавшего Тихоокеанской газовой и электрической компании. Взрыв оставил после себя кратер диаметром 51 м, 7,9 м в ширину и глубиной до 12 метров. Восемь человек погибло, и более пятидесяти было ранено. Высота пламени достигала 300 футов, очевидцы сообщали об огненном шаре и стене огня высотой 1000 футов.

Геологическая служба США зарегистрировала результат ударной волны, эквивалентный землетрясению в 1.1 балл по шкале Рихтера. К ликвидации пожара были привлечены более 200 пожарных - сильный ветер раздувал пламя, затрудняя борьбу с огнем. В результате взрыва и последующего пожара были повреждены 35 домов, три из них были признаны непригодными для проживания.

Фото: Части газопровода на улицах после взрыва.

Фото: Разрушения после взрыва и пожара в Сан-Бруно

Фото: Применение авиации для тушения пожара в Сан Бруно

Критики утверждают, что трубопроводы должны стать еще более безопасными в эксплуатации. По их словам, многих аварий на трубопроводах можно было бы избежать - при должном контроле со стороны правительства и усилении мер безопасности в отрасли.

На общую длину всех трубопроводов Америки - 2,5 млн. км, ежегодно приходится сотни утечек и разрывов, ценой которых становятся в отдельных случаях и человеческие жизни. И по мере старения трубопроводных систем, риск аварий на этих линиях будет только увеличиваться. При том, что с 1986 года, при авариях на трубопроводах уже погибли более 500 человек, пострадали свыше 4000, а убытки составили почти семь миллиардов долларов.

Причин аварий очень много - это и банальная коррозия оборудования, и плохое качество сварных швов, и даже стихийные бедствия. Так, в 2012 году трубопроводы в штате Нью-Джерси подверглись атаке урагана "Сэнди", что привело к возникновению более 1600 случаев разгерметизации трубопровода. Все утечки были взяты под контроль, и никто не пострадал, но компания-оператор понесла значительные убытки и обанкротилась, оставив почти 28 тысяч человек без подачи газа.

Наконец, одна из самых банальных причин - старость. Трубопроводы элементарно стареют. Более половины из них построены около пятидесяти лет назад. И такая ситуация также чревата авариями.

Так, в 2011 году, в городе Аллентаун взорвался газопровод. Погибло 5 человек, было уничтожено почти пятьдесят домов. Причиной был названо превышение срока эксплуатации - газопровод был изготовлен из чугунных труб в 1928 году. 83 года назад.

Фото: Пожар бушует в городе Аллентаун, штат Пенсильвания, после взрыва газа в феврале 2011 года

Другая причина выхода трубопроводов из строя - коррозия. Сталь, находящаяся в соприкосновении с активными средами, такими как нефть и газ - закономерно ржавеет.

На долю коррозионных процессов приходится от 15 до 20 процентов всех сообщений о "серьезных инцидентах", что в переводе с бюрократического языка означает гибель людей, или серьезный ущерб имуществу.

В общем и целом, аварии по причине коррозии насчитывают более 1400 инцидентов с 1986 года.

Сокращение государственного контроля

Основная часть государственного контроля за функционированием тысяч километров нефтепроводов и газопроводов возложена на небольшое агентство в составе Департамента транспорта. Это так называемое "Управление по безопасности трубопроводов и опасным материалам" США (Pipelines and Hazardous Materials Safety Administration ),сокращенно - PHMSA

Агентство утверждает, что только семь процентов линий передачи природного газа, и лишь 44% всех опасных линий передачи жидких нефтепродуктов, соответствуют строгим критериям проверки и проверяются регулярно. Все остальное проходит контроль гораздо реже.

Причина тут кроется в давней ошибке. В 60-е и 70-годы было принято большинство федеральных законов о безопасности трубопроводов, а также установлены стандарты безопасности для вновь построенных линий.

Однако на трубопроводы, построенные ранее этого срока, данные правила не распространялись - просто нереально было, даже для США, привести эти трубопроводы к единому стандарту безопасности. Именно к таким объектам принадлежал газопровод, взорвавшийся в городе Сан-Бруно

Эта магистраль, участок которой лопнул вдоль дефектного шва, как показало расследование, никогда не проходила тестов на высокое давление. Но, парадокс в том, что, поскольку он был установлен в 1956 году, его владелец и не обязан был проводить такое тестирование.

То, к чему привела такая ситуация - на фотографии:

Фото: Сгоревшие автомобили и разрушенные дома в Сан-Бруно, США, после взрыва газопровода в сентябре 2010 года.

Позже, в 1990 годах были приняты дополнительные акты, и сегодня PHMSA набирает персонал для тестирования старых трубопроводов в зоне риска. Сюда относится населенные пункты, или крупные источники пресной воды. Однако многие старые газопроводы в сельской местности все равно не могут быть охвачены тестированием.

Другой элемент риска - это временные и технические линии, например магистрали, соединяющие скважины на месторождениях. К ним вообще неприменимы какие-либо стандарты регулирования, потому что многие из этих линий работают при очень низких давлениях и находятся в отдаленных районах.

Поэтому правительственные агенты не могут собрать объективных данных о разрывах и протечках, а также о том, соблюдаются ли вообще какие-либо стандарты для сварочных швов, или глубинах залегания на этих объектах.

Еще одна проблема, в последнее время ставшая традиционной для США - недостаток финансирования. Миф о "супербогатой Америке«» уже практически прописался у нас в подкорке. Возможно, когда-то так и было, но сегодня это именно что миф. Денег на обслуживание инфраструктуры в Америке не хватает точно так же, как и в России, или других странах мира.

Причины этого разные, одна из них - гигантские объемы и расстояния. В частности, при огромной протяженности линий передачи нефти и газа в Соединенных Штатах, PHMSA не хватает ресурсов для адекватного мониторинга миллионов километров трубопроводов.

Агентство может финансировать деятельность лишь 137 инспекторов, а зачастую, реально работает еще меньше. Некомплект персонала - настоящий бич этой структуры. Согласно отчету, в период между 2001 и 2009 агентство сообщало о кадровом дефиците в среднем 24 человек в год.

По сообщениям газеты "Нью-Йорк Таймс", агентству хронически не хватает инспекторов, потому что их переманивают трубопроводные компании, которые используют их для проверки своих собственных магистральных линий.

Пути решения проблемы

Если люди не справляются с мониторингом сотен тысяч километров трубопроводов, то на помощь должна прийти техника. Одним из выходов из такой ситуации является повсеместная установка запорной арматуры с автоматическим дистанционным управлением , которая может быстро остановить подачу газа или нефти в случае аварии.

В июле 2010 года, в результате прорыва нефтепровода, в реку Каламаза вытекло около миллиона галлонов сырой нефти. Операторам трубопровода понадобилось почти 17 часов, для того чтобы найти и вручную перекрыть место разрыва. Использование автоматической арматуры позволило бы значительно сократить это время, а значить - уменьшить масштаб экологического загрязнения местности.

Фото: Контрольно-измерительный снаряд Smart Pig

Эти устройства помещаются в газопровод и перемещаются в нем, измеряя важные параметры, такие как деформации труб и повреждения металла.

Однако не каждый газопровод имеет подходящий диаметр для использования подобного устройства, а для регулярной диагностики нужен частичный демонтаж, а значит простой трубопровода, вновь влекущий за собой убытки.

Таким образом, на кону стоят деньги - против человеческих жизней. Ведь пока компании-операторы считают убытки, взрывы на газопроводах продолжают уносить человеческие жизни.

В июне 2013 года разрыв газопровода вызвал крупный взрыв и пожар в городке Вашингтон-Пэрриш в штате Луизиана.

Фото: Взрыв в городе Вашингтон-Пэрриш, штат Луизиана

Взрыв произошел в 5:30 утра по местному времени. Жители в радиусе одной мили от эпицентра взрыва были эвакуированы. Обошлось без человеческих жертв, но некоторые близлежащие строения были уничтожены огнем. Данная линия перекачивает 3,1 млрд кубических футов газа в день из Техаса в Южную Флориду. Часть линии была закрыта, и остается неясным, когда подача газа будет возобновлена. Ведется следствие, чтобы определить причину взрыв.

15 июня 2015 года, около 8 часов вечера по местному времени, страшный взрыв потряс окрестности городка Куэро в Техасе

Огромный столб огня был виден за 20 километров. Жители близлежащих домов были оперативно эвакуированы. К счастью, обошлось без человеческих жертв, однако люди были изрядно напуганы

3 ноября на участке в районе населенного пункта Алмазово Московской области высокого давления "Оборники- Щитниково" и начался пожар. Высота пламени достигала до 10 метров.
По предварительным данным, без газоснабжения могут находиться три населенных пункта - Балашиха, Монино, Черная.
В садовом товариществе "Алмаз-1" Щелковского района .

19 октября в городе Ижевске на подземном газопроводе высокого давления - трубу повредил подрядчик, проводивший работы по благоустройству пешеходного перехода. В результате аварии без газа остались два района города с населением около 110 тысяч человек (население Ижевска - около 600 тысяч человек) и 31 промышленное предприятие.

10 сентября в Москве в районе 89-го километра МКАД при проведении работ по опрессовке труб газопровода бригадой рабочих газовой службы . В результате аварии погибли три человека.

В ночь на 18 мая на участке магистрального газопровода Моздок-Казимагомед в Кизилюртовском районе республики Дагестан . В результате без газа остались города Кизилюрт и Хасавюрт, а также ряд населенных пунктов Кизилюртовского, Хасавюртовского и Казбековского районов республики. Жертв нет.

26 апреля на Дмитровском шоссе Москвы произошло . Во время опрессовки нового газоотвода в доме 64 произошел взрыв сжатого воздуха. Один человек погиб, с травмами различной тяжести были госпитализированы двое прохожих и прораб "Газтеплостроя".

2009
28 сентября произошел прорыв магистрального газопровода в районе 32-го километра Новорижского шоссе в ближнем Подмосковье. произошел в результате того, что водитель легкового автомобиля не справился с управлением и врезался в задвижку газопровода. В результате возник сильный пожар, мужчина погиб. Из-за аварии без газа остались две больницы, временно была прекращена подача газа в 1095 коттеджей, 200 квартир и семь котельных.

В ночь с 9 на 10 мая на Озерной улице на западе Москвы , признанный самым большим в послевоенной истории столицы. На его тушение ушло свыше 15 часов, пострадали пять человек, сгорели и получили повреждения более 80 автомашин. По данным специалистов Ростехнадзора, причиной взрыва на газопроводе стали нарушения при строительстве в 1980 году и при ремонте в 1996 году, а также некачественный материал, из которого сделан трубопровод.

2008
17 февраля (Новгородская область). При разрыве газопровода произошли загорание газа и значительный выброс пламени. Пламя из газопровода подожгло три строения, находившиеся от места разрыва на расстоянии примерно в 200 метров. Два частных жилых дома были полностью уничтожены. В них проживали 11 человек, среди которых было несколько детей. Двум жительницам сгоревших домов в связи с пережитым стрессом потребовалась медпомощь. Одна из них была госпитализирована в Валдайскую центральную районную больницу. В результате аварии в течение почти двух часов было перекрыто движение по федеральной трассе Москва - Санкт-Петербург.

13 января в результате взрыва на магистральном газопроводе в Тоснинском районе Ленинградской области возник пожар. В момент пожара высота огненного столба достигала 100 метров. На момент локализации пожара выгорело около 0,5 гектара окружающей газопровод территории. Жертв и пострадавших не было.

2007
В ночь на 26 июля произошли взрыв и пожар на магистральном газопроводе во Всеволжском районе Ленинградской области на участке Северная ТЭЦ (Петербург) - Лаврики (Ленинградская область). Газопровод является частью единой системы газоснабжения Санкт-Петербурга и области. Авария сопровождалась сильным выбросом пламени и дыма, принявшим форму гриба, что вызвало панику среди жителей города. В районе происшествия загорелся лес и торфяники на площади около двух гектаров. В борьбе с огнем были задействованы 25 пожарных расчетов. Пострадавших нет.

Материал подготовлен на основе информации РИА Новости

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Подземные магистральные газопроводы

1. Технологическая схема магистрального газопровода

Магистральные газопроводы - это стальные трубопроводы, по которым транспортируется природный или искусственный газ от мест добычи или производства к местам его потребления. Диаметр газопровода, в основном, варьируется от 700 мм до 1400 мм. Глубина прокладки газопровода от 0,8 до 1 м.

В зависимости от рабочего давления газопроводы подразделяют на два класса:

1 класс - свыше 2,5 до 10 МПа включительно;

2 класс - свыше 1,2 до 2,5 МПа включительно.

В состав магистрального газопровода входят (Рисунок 1.1): собственно газопровод и его ответвления, головные сооружения, компрессорная станция, пункты контрольно-измерительной аппаратуры, ремонтно-эксплуатационная служба, газораспределительная станция, подземные хранилища газа, линии связи и электропередачи, установки электрозащиты газопровода от коррозии, вспомогательные сооружения (водоснабжения и канализации, усадьбы линейных обходчиков, административные и хозяйственно-бытовые объекты).

Рисунок 1.1 - Состав магистрального газопровода, где ГСС - газосборные сети, ГКС - головная компрессорная станция, КС - промежуточная компрессорная станция, ГХ - подземное хранилище газа

Головные сооружения служат для очистки газа от вредных примесей (удаления влаги, отделения серы и других ценных компонентов) и подготовки его к транспортировке.

Компрессорные станции (КС) - это комплекс сооружений, предназначенный для сжатия транспортируемого газа до такого давления, которое обеспечило бы бесперебойную подачу его от месторождения до потребителей.

В состав КС входят: компрессорный цех с установками для сжатия газа (его пластовое давление на промысле невелико), пылеулавливатели, установки для очистки газа и другие объекты.

При подходе магистрального газопровода к местам потребления газа (городам, поселкам, предприятиям) давление в нем должно быть снижено до уровня, необходимого потребителям (0,3-1,2 МПа). Для этого предназначены газораспределительные станции (ГРС), в которых размещается аппаратура по снижению давления, дополнительной очистке и осушке газа.

Для регулирования неравномерности потребления газа устраивают подземные газохранилища. Сооружают их в водонасыщенных пористых пластах, отработанных нефтяных и газовых месторождениях.

При эксплуатации магистральных газопроводов контролю подлежат следующие основные показатели:

а) давление газа в начале и в конце участка, на выходе с промысла и на отводах на газораспределительные станции;

б) количество транспортируемого газа, температура его на входе и выходе компрессорной станции, средняя по участку, на входе в газораспределительную станцию;

в) наличие конденсата, влаги, сероводорода, тяжелых углеводородов и загрязнений в газе, давление на входе и выходе компрессорной станции, количество работающих агрегатов и режим их работы;

г) исправность оборудования на компрессорных и газораспределительных станциях, герметичность газопровода;

д) режим закачки газа в подземные хранилища, режим отбора газа постоянными и буферными потребителями и другие показатели, характеризующие состояние газопровода, его сооружений и оборудования.

Для компримирования больших потоков газа, транспортируемых по магистральным газопроводам, суммарная мощность перекачивающих компрессорных установок достигает 50-60 тыс. кВт на одной станции. При сжатии газа на компрессорной станции ему сообщается значительное количество теплоты. Применение для газопроводов труб большого диаметра вызывает уменьшение удельной теплообменной поверхности труб на единицу количества транспортируемого газа. Поэтому по пути следования к следующей станции газ не может охладиться до необходимой температуры за счет теплоотдачи в окружающую среду, т.е. его температура после каждой станции будет повышаться. Максимальная температура транспортируемого газа ограничивается обеспечением устойчивости газопровода, прочностными характеристиками изоляции, климатическими и геологическими условиями на трассе газопровода. Поэтому возникает необходимость охлаждения газа после сжатия.

В зависимости от перечисленных факторов температура транспортируемого газа должна составлять 40-70°С.

Рисунок 1.2 - Общий вид транспортировки газа

2. Виды аварий на магистральном газопроводе

Доминирующими причинами аварий на магистральных газопроводах являются следующие:

Коррозионное разрушение газопроводов, 48%;

Брак строительно-монтажных работ (СМР), 21%;

Обобщенная группа механических повреждений, 20%;

Заводские повреждения труб 11%.

Где, обобщенная группа механически повреждений следующая:

Случайное повреждение при эксплуатации, 9%;

Террористические акты, 8%;

Природные воздействия, 3%.

Большинство аварий на магистральных трубопроводах ограничивается утечкой газа, равной объему трубы до отключающей арматуры. Или горение факела. Но также возможны большие катастрофы, как например, Железнодорожная катастрофа под Уфой - крупнейшая в истории России и СССР железнодорожная катастрофа, произошедшая 4 июня (3 июня по московскому времени) 1989 года в Иглинском районе Башкирской АССР в 11 км от города Аша (Челябинская область) на перегоне Аша - Улу-Теляк. В момент прохождения двух пассажирских поездов №211 «Новосибирск-Адлер» и №212 «Адлер-Новосибирск» произошёл мощный взрыв облака лёгких углеводородов, образовавшегося в результате аварии на проходящем рядом трубопроводе «Сибирь-Урал-Поволжье». Погибли 575 человек (по другим данным 645), 181 из них - дети, ранены более 600.

На трубе продуктопровода «Западная Сибирь-Урал-Поволжье», по которому транспортировали широкую фракцию лёгких углеводородов (сжиженную газобензиновую смесь), образовалась узкая щель длиной 1,7 м. Из-за протечки трубопровода и особых погодных условий газ скопился в низине, по которой в 900 метрах от трубопровода проходила Транссибирская магистраль, перегон Улу-Теляк - Аша Куйбышевской железной дороги, 1710-й километр магистрали, в 11 километрах от станции Аша, на территории Иглинского района Башкирской АССР.

Примерно за три часа до катастрофы приборы показали падение давления в трубопроводе. Однако вместо того, чтобы искать утечку, дежурный персонал лишь увеличил подачу газа для восстановления давления. В результате этих действий через почти двухметровую трещину в трубе под давлением вытекло значительное количество пропана, бутана и других легковоспламенимых углеводородов, которые скопились в низине в виде «газового озера». Возгорание газовой смеси могло произойти от случайной искры или сигареты, выброшенной из окна проходящего поезда.

Машинисты проходящих поездов предупреждали поездного диспетчера участка, что на перегоне сильная загазованность, но этому не придали значения.

4 июня 1989 года в 01:15 по местному времени (3 июня в 23:15 по московскому времени) в момент встречи двух пассажирских поездов прогремел мощный объёмный взрыв газа и вспыхнул гигантский пожар.

В поездах №211 «Новосибирск-Адлер» (20 вагонов, локомотив ВЛ10-901) и №212 «Адлер-Новосибирск» (18 вагонов, локомотив ЧС2-689) находилось 1284 пассажира (в том числе 383 ребёнка) и 86 членов поездных и локомотивных бригад. Ударной волной с путей было сброшено 11 вагонов, из них 7 полностью сгорели. Оставшиеся 27 вагонов обгорели снаружи и выгорели внутри. По официальным данным 575 человек погибло (по другим данным 645), 623 стали инвалидами, получив тяжёлые ожоги и телесные повреждения. Детей среди погибших - 181.

Официальная версия утверждает, что утечка газа из продуктопровода стала возможной из-за повреждений, нанесённых ему ковшом экскаватора при его строительстве в октябре 1985 года, за четыре года до катастрофы. Утечка началась за 40 минут до взрыва.

По другой версии причиной аварии явилось коррозионное воздействие на внешнюю часть трубы электрических токов утечки, так называемых «блуждающих токов» железной дороги. За 2-3 недели до взрыва образовался микросвищ, затем, в результате охлаждения трубы в месте расширения газа появилась разраставшаяся в длину трещина. Жидкий конденсат пропитывал почву на глубине траншеи, не выходя наружу, и постепенно спускался вниз по откосу к железной дороге.

При встрече двух поездов, вероятно в результате торможения, возникла искра, которая послужила причиной детонации газа. Но скорее всего причиной детонации газа явилась случайная искра из-под пантографа одного из локомотивов.

Рисунок 2.1 - катастрофа под Уфой

3. Поражающие факторы

Поражающие факторы при аварии на магистральном газопроводе:

а) барического воздействия волн сжатия, образующихся за счет расширения в атмосфере природного газа, выброшенного под давлением из разрушенного участка трубопровода («первичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

б) барического воздействия воздушных волн сжатия, образующихся при воспламенении газового облака и расширении продуктов его сгорания («вторичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

в) термического воздействия огненного шара при воспламенении переобогащенного топливом газового облака, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50С, разрушение трубопровода 350С);

г) термического воздействия воспламенившихся струй газа, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50 ?С, разрушение трубопровода 350 ?С).

д) воздействие осколков (или фрагментов) трубы, измеряется как кг.

Объекты поражения: Человек, Газопровода, Рядом находящиеся эксплуатационные объекты, Атмосфера.

Анализ поражающих факторов при аварии в местах пересечения магистральных газопроводов показывает, что при воздействии ударной волны на верхний газопровод в результате расширения газа, выбрасываемого из нижнего газопровода, давление во фронте ударной волны составляет от 6,4 МПа, а значение импульса составляет 88,3 кПа·с. При аварийных разрывах, как показывает анализ статистических данных, возможно образование осколков магистральных газопроводов массой более трех тысяч килограмм. Некоторые фрагменты могут достигать 10 тонн. При этом выброс осколков из траншеи в 75% случаях размером примерно 25 метров на 4,5 происходит на расстояние от 16 до 400 метров. Следует отметить, что при вязком разрушении расстояние выброса может достигать 180 метров, а при хрупком - до 700 метров.

По расчетным методикам получается так, что сквозные пробития верхнего газопровода могут возникнуть когда масса осколков будет превышать 1300 килограмм при прямом ударе и 2800 - при косом. При скорости осколка, равной скорости метания грунта при угле раскрытия нижнего магистрального газопровода равном 30 градусам, верхний газопровод разрушается под воздействием осколочных фрагментов более 240 килограмм. Если угол раскрытия равен 60 градусам, газопровод разрушается от осколка массой 1300 кг.

При тепловом воздействии на смежный аварийному верхний газопровод, получается интересная картина: длина факела может достигнуть нескольких сотен метров, распространение пожара в котловане - до 80 метров, температура в зоне горения достигает 1500 ?С, тепловой поток вырастает до 200 кВт/м?. При воздействии на газопровод теплового потока горящего газа температура разрушения газопровода составляет 330 ?С, а время прошедшее от начала теплового воздействия, до разрушения составляет от трех до пяти минут.

4. Безопасность магистральных газопроводов

Чтобы иметь возможность отключать отдельные участки газопровода для ремонтных работ, а также для сохранения газа во время аварийных разрывов газопровода, на магистральных газопроводах не реже чем через 20-25 км устанавливают запорную отключающую арматуру. Кроме того, запорная арматура устанавливается во всех ответвлениях к потребителям газа, на шлейфах компрессорных станций, на берегах рек и др. Чтобы иметь возможность сбрасывать газ при необходимости опорожнения газопровода, запорную арматуру устанавливают также и на свечах.

Запорная арматура группируется в линейные отключающие устройства. В неё входит:

ь Запорная арматура с байпасом (например, кран);

ь Продувочные свечи (расположены от крана 5 - 15 м);

ь Свечи предназначены для сбрасывания газа в атмосферу.

В качестве запорной арматуры применяются краны, задвижки и вентили.

Кранами называется такая запорная арматура, которая закрывает или открывает проход жидкости или газа путем поворота пробки.

По конструкции краны делятся на простые поворотные краны с выдвижной пробкой и краны с принудительной смазкой, по способу присоединения к трубопроводу - на фланцевые, муфтовые и с концами под приварку, по роду управления - с ручным управлением, с пневмоприводом и с пневмогидравлическим приводом. Последние имеют дублирующий ручной привод.

На магистральных газопроводах применяются краны с принудительной смазкой на давление до 64 кГ/см? типа 11с320бк и 11с321бк, а также краны со сферическим затвором.

Задвижки

Запорная арматура, в которой проход открывается путем подъема плоского диска перпендикулярно движению среды, называется задвижкой.

На магистральных газопроводах применяют только стальные задвижки на давление до 64 кГ/см? с условным проходом от 50 до 600 мм. Для задвижек, устанавливаемых на подземных участках газопровода, строятся специальные колодцы, дающие возможность обслуживать арматуру (набивать и подтягивать сальники, смазывать, красить и т. д.). Присоединительные концы задвижек делаются как под приварку, так и для фланцевого соединения.

На магистральных газопроводах вентили применяются главным образом как запорная арматура на контрольно-измерительных приборах, конденсатосборниках, узлах запорных устройств, редуцирующих установках и др.

Линейные отключающие узлы с задвижками монтируют в специальных бетонных или кирпичных колодцах с раскрывающимися на две половины крышками, промежуточным полом (из съемных щитов) и металлической лестницей для спуска в колодец. Подземная часть колодца тщательно изолируется от попадания влаги. В сменках колодца, через который проходит газопровод, устанавливаются патроны; зазоры между ними и трубой уплотняются с помощью сальникового устройства. Трубы и арматура в колодцах должны быть тщательно вычищены и покрыты водостойкими красками.

На рисунке показаны схемы различных конструкций линейных отключающих узлов, оборудованных кранами. Как видно из рисунка, линейные отключающие узлы, предназначенные для перекрытия основной магистрали газопровода, имеют свечи по обе стороны отключающего крана для сбрасывания газа на любом из двух участков газопровода. На отключающем кране отвода от магистрального газопровода устанавливается только одна свеча за краном по направлению газа. На двухниточных переходах продувочные свечи устанавливаются на основной и резервной нитках между отключающими узлами и на основной нитке до узлов.

Коррозия металлов трубопровода

Коррозия металлов - химический или электрохимический процесс разрушения их под воздействием окружающей среды. Процессы разрушения протекают относительно медленно и самопроизвольно.

На эксплуатационное состояние подземных трубопроводов оказывает воздействие электрохимическая коррозия. Электрохимическая коррозия - коррозия металлов в электролитах, сопровождающаяся образованием электрического тока. Процесс разрушения подземных трубопроводов происходит под воздействием окружающей среды (почвенного электролита). При взаимодействии металла трубы с окружающей средой поверхность трубопровода разделяется на положительные (анодные) и отрицательные (катодные) участки. Между этими участками от анода к катоду протекает электрический ток (ток коррозии), который разрушает трубопровод в местах анодных зон.

Основными факторами, определяющими коррозионную активность грунтов, являются электропроводимость, кислотность, влажность, солевой и щелочной состав, температура и воздухопроницаемость.

Разрушение подземных трубопроводов может происходить также и под воздействием блуждающих токов (электрокоррозия). Коррозия металла в этом случае связана с проникновением на трубу токов утечки с рельсов электрифицированного транспорта или других промышленных установок постоянного тока.

Способы защиты магистральных газопроводов от электрохимической коррозии пассивный и активный.

Пассивная защита включает покрытие поверхности газопровода противокоррозионной изоляцией.

К активным способам защиты газопроводов от коррозии относится электрическая, которая включает катодную, протекторную и дренажную защиты. Электрозащита дополняет пассивную защиту, чем обеспечивается предохранение газопроводов от почвенной коррозии.

Сущность катодной защиты заключается в катодной поляризации посторонним источником постоянного тока металлической поверхности трубы газопровода, соприкасающегося с землей. Поляризация осуществляется током, входящим из грунта в трубу. Труба при этом является катодом по отношению к грунту.

Сценарий событий

Возможные сценарии событий на магистральных трубопроводах:

Сценарий №1, Весенняя подвижка грунтов > Дополнительные напряжения в трубопроводе > Разрыв газопровода > Утечка газа > рассеивание утечки.

Сценарий №2, Образование трещины по продольному сварному шву > утечка газа > проникновение газа по грунту в кирпичный колодец линейного сооружения > образование газовоздушной смеси > Образование искры > Взрыв газовоздушной смеси.

Сценарий №3, Нарушение изоляции трубопровода > коррозия трубопровода > утончение стенки трубы > разрушение газопровода > утечка газа > рассеивание утечки.

Сценарий №4, Нарушение целостности газопровода внешним воздействием > утечка газа > факельное горение.

Сценарий №5, Температурные нагрузки на газопровод > усталостное разрушение труб > разрыв газопровода > утечка газа > факельное горение

Дерево событий

Ниже представлено дерево отказов, головным событием которого является аварийная разгерметизация газопровода.

Минимальные пропускные сочетания - это набор исходных событий-предпосылок, обязательного (одновременного) возникновения, которых достаточно для появления головного события (аварий).

Минимальные базовые сочетания - уравнения для головного события.

Уравнение головного события для данного дерева отказа будет:

TOP = 1.2 + 3 + 4.5 + 6 + 7

магистральный газопровод авария коррозия

Тогда расчет вероятности реализации событий для головного события, следующий:

Qtop = 1.2 + 3 + 4.5 + 6 + 7 = 0.0065525 или в процентах 0.65525%

Или вероятность событий:

Произойдет событие БРАК СМР = 0.05525%

Произойдет событие Заводской дефект труб = 0.6%.

Размещено на Allbest.ru

Подобные документы

    Использование в России трубопроводного транспорта как одного из эффективных и экономичных средств газообразных веществ. Причины коррозии на трубопроводе, аварий на нефтепроводах, газопроводе, водопроводе. Спасение пострадавших при пожарах и взрывах.

    реферат , добавлен 24.12.2015

    Состояние системы подземных трубопроводов в РФ на 2008 год. Применение новых технологий. Аварии на нефтепроводах; газопроводе; водопроводе. Последствия аварий на трубопроводах. Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах.

    реферат , добавлен 30.04.2008

    Технические характеристики аварий. Факторы радиационной опасности. Возможные пути облучения при нахождении личного состава в районе аварийной АЭС. Оценка радиационной обстановки при аварии. Лечебно-профилактические работы в очагах, их основные этапы.

    презентация , добавлен 23.08.2015

    Признаки аварии на магистральном трубопроводном транспорте. Вид ответственности должностных и юридических лиц за невыполнение требований правил по предупреждению и ликвидации чрезвычайных ситуаций. Аварии на хранилищах сжатого газа и их устранение.

    контрольная работа , добавлен 14.02.2012

    Основное понятие об авариях, примерный их перечень. Человеческий фактор как одна из причин аварий. Анализ аварий на шахте "Западная-Капитальная" (Ростовская обл., г. Новошахтинск), шахтах "Ак Булак комур", "Комсомольская", "Юбилейная", "Ульяновская".

    реферат , добавлен 06.04.2010

    Виды аварий на радиационно-опасных объектах. Особенности аварий атомной энергетики. Основные фазы протекания аварий, принципы организации и проведения защитных мероприятий. Расчет уровня шума в жилой застройке. Расчет общего производственного освещения.

    реферат , добавлен 12.04.2014

    Причины техногенных аварий. Аварии на гидротехнических сооружениях, на транспорте. Краткая характеристика крупных аварий и катастроф. Спасательные и неотложные аварийно-восстановительные работы при ликвидации крупных аварий и катастроф.

    реферат , добавлен 05.10.2006

    Виды безопасностей. Классификация чрезвычайных ситуаций. Основные поражающие факторы при радиационной аварии. Принципы защиты от ионизирующего излучения. Вредные, опасные факторы производственной среды. Воздействие на организм тока, ультразвука.

    шпаргалка , добавлен 03.02.2011

    Действие сильнодействующих ядовитых веществ на население, защита от них. Характеристика вредных и сильнодействующих ядовитых веществ. Аварии с выбросом СДЯВ. Последствия аварий на химически опасных объектах. Профилактика возможных аварии на ХОО.

    лекция , добавлен 16.03.2007

    Классификация чрезвычайных ситуаций. Краткая характеристика аварий и катастроф, характерных для Республики Беларусь. Аварии на химически опасных, пожаро- и взрывоопасных объектах. Обзор стихийных бедствий. Возможные чрезвычайные ситуации для г. Минска.