Распределённая энергетика. О текущей ситуации

Международная научно- практическая конференция « Малая энергетика-2005»

Воропай Н.И. (Институт систем энергетики им. Л.А. Мелентьева СО РАН, Иркутск, Россия)

Предпосылки и тенденции.

Электроэнергетика экономически развитых стран мира, в том числе, бывшего СССР, интенсивно развивалась в течение ХХ века главным образом путем повышения уровня централизации электроснабжения при создании все более мощных электроэнергетических объектов (электростанций, ЛЭП). Следствием этого явилось формирование территориально распределенных протяженных электроэнергетических систем (ЭЭС). Это позволило достичь существенного экономического эффекта, повысить надежность электроснабжения и качество электроэнергии .

С начала XX века технологии традиционных паротурбинных агрегатов тепловых и атомных электростанций развивались по пути использования все более высоких параметров пара, это требовало применения более совершенных материалов котлов и турбин, при этом имела место тенденция увеличения единичной мощности установок. Все отмеченное позволяло улучшать технико-экономические параметры установок - удельные капиталовложения и постоянные текущие издержки на единицу мощности и удельные расходы топлива на единицу вырабатываемой электроэнергии. Указанная тенденция укрупнения агрегатов наблюдалась и в гидроэнергетике, хотя и в меньшей мере.

В 1980-е годы эта тенденция принципиально изменилась вследствие появления высокоэффективных (до 55-60 % КПД) газотурбинных и парогазовых установок (ГТУ и ПГУ) широкого диапазона мощностей, в том числе малых - от единиц до одного-двух десятков МВт. Отличительной особенностью таких установок, особенно малых, является их высокая заводская готовность, что позволяет вводить их в эксплуатацию за период в пределах года . Одновременно появился большой ассортимент мини- и микро- ГТУ (от долей кВт до нескольких десятков кВт). На основе малых ГТУ начали сооружаться малые ГТУ-ТЭЦ для комбинированной выработки электроэнергии и тепла.

К малой энергетике относятся и многие типы энергетических установок на возобновляемых источниках энергии (ВИЭ), прежде всего ветроэнергетические установки (ВЭУ) . Малые ГТУ, ПГУ и ВЭУ устанавливаются непосредственно у потребителей и подключаются к распределительной электрической сети на напряжениях 6-35 кВ. Эти установки получили название "распределенная генерация" .

Главными факторами, стимулирующими развитие распределенной генерации, являются:

· адаптация потребителей к рыночной неопределенности в развитии электроэнергетики и в ценах на электроэнергию; это способствует снижению рисков дефицита мощности и повышению энергетической безопасности;

· повышение адаптационных возможностей самих ЭЭС к неопределенности рыночных условий развития экономики и снижение тем самым инвестиционных рисков;

· появление новых высокоэффективных энергетических технологий (ГТУ и ПГУ);

· рост доли газа в топливоснабжении электростанций;

· ужесточение экологических требований, стимулирующее использование ВИЭ (гидроэнергии, ветра, биомассы и др.) при протекционистской политике государств.

Масштабы развития.

Развитие малых ГТУ-ТЭЦ происходит достаточно интенсивно. В частности, в странах ЕС прогнозируется рост суммарной мощности ГТУ-ТЭЦ (прежде всего небольшой мощности) с 74 ГВт в 2000 г. до 91-135 ГВт в 2010 г. и 124-195 ГВт в 2020 г. (в зависимости от энергетической политики ЕС), что составляет 12% от суммарной генерирующей мощности стран ЕС в 2000 г., 13-18% - в 2010 г., 15-22% - в 2020 г. .

В российских условиях уже в настоящее время малые ГТУ-ТЭЦ оказываются эффективными. Расширение сферы газификации на средние и малые города и поселки городского типа, создание рынка высокоэкономичных, с коротким сроком сооружения, быстроремонтируемых установок малых ГТУ-ТЭЦ обеспечивают их активное вовлечение в структуру генерирующих мощностей регионов страны. Так, в Астраханской области при нынешнем уровне генерации в 1060 МВт из 550 МВт электрической мощности, планируемой к вводу до 2020 г., 65,5 МВт должны составить малые ГТУ-ТЭЦ, а в более удаленной перспективе их потенциал может достигнуть 185-200 МВт. В Томской области при существующем уровне генерации в 1804 МВт к 2020 г. предполагается ввести 246 МВт, в том числе 130 МВт (53%) за счет малых ГТУ-ТЭЦ. При этом используется отечественное оборудование .

Оценки показывают, что в перспективе потенциальные возможности сооружения малых ГТУ-ТЭЦ вместо неэкономичных устаревших котельных в городах и поселках могут составить суммарную электрическую мощность в 100 ГВт, количеством 12900 штук, средней единичной мощностью 7-8 МВт, а в максимальном варианте -соответственно 175 ГВт, 84000 штук, средней единичной мощностью 2-3 МВт . Реалистичные прогнозы дают в целом по стране 25-35 ГВт к 2020 г. и 35-50 ГВт к 2050 г. малых ГТУ-ТЭЦ, т.е. до 10-15% от суммарной установленной мощности генерации .

В последние годы использование ВИЭ для производства электроэнергии получило во многих странах значительное развитие. Западно-европейские страны планируют увеличить производство электроэнергии на базе ВИЭ к 2010 г. в среднем более, чем на

10 %, особенно за счет использования энергии ветра (рис. 1) . В настоящее время суммарная установленная мощность работающих в мире ВЭУ составляет более 31 ГВт , наибольшая по мощности единичная ВЭУ - 4,5 МВт - введена в Германии . Основные вводы ВЭУ приходятся на европейские страны - Германию, Данию, Великобританию, Нидерланды, Испанию, Швецию, Италию. Потенциал ветроэнергии имеется и в России .

Следует отметить, что в 2000 г. в России работали 12 ВЭУ (суммарная мощность 7,2 МВт), 2 геотермальные установки (23 МВт), 59 малых ГЭС в диапазоне мощностей 0,5-30 МВт (513 МВт), около 100 мини-ГЭС мощностью менее 0,5 МВт (40 МВт), 11 установок на биомассе (523 МВт). Все это составляет всего 0,5 % установленной мощности электростанций России. Согласно энергетической стратегии России на период до 2020 года потенциал возобновляемых энергоресурсов в стране достаточно велик (табл. 1), однако при этом установленная мощность ВИЭ прогнозируется лишь в следующих объемах: ВЭУ - 1-1,2 ГВт; малые и мини-ГЭС - 2,5-3 ГВт, геотермальные установки - 0,25-0,3 ГВт, что составляет весьма незначительную долю от суммарной генерации на этот период.

Между тем, в мире накоплен достаточно богатый опыт экономического стимулирования ВИЭ . Основными формами такой поддержки являются:

субсидии и кредиты по низким процентным ставкам; гарантии по банковским ссудам;

установление фиксированных закупочных цен на энергию, вырабатываемую на основе ВИЭ;

освобождение от уплаты налога на часть прибыли, инвестированной в нетрадиционную энергетику; - предоставление режима ускоренной амортизации; финансирование НИОКР в области нетрадиционной энергетики.

Опосредованно стимулирующее воздействие на использование ВИЭ оказывают такие инструменты экологической политики как плата за загрязнение окружающей среды, за выброс парниковых газов, другие "зеленые" налоги.

Возобновляемые источники энергии наиболее широко используются в странах с активным экологическим регулированием, которое включает систему законодательных, административных и экономических инструментов. Эти инструменты применяются на государственном и муниципальном уровнях для стимулирования сокращения выбросов (не только энергетическими установками). Такой подход типичен для стран Скандинавии, Дании, Австрии, Нидерландов, Германии, США.

Специфические подходы к экологической политике у развивающихся стран (Китай, Индия и др.), которые сочетают прямое административное регулирование и косвенные экономические стимулы. Тем не менее, экономическое стимулирование инвестиций в ВИЭ и в этих странах становится все более важным.

Стимулирующая политика в отношении ВИЭ начинает разрабатываться и в России. Так, группа американских и российских компаний разработала пилотный проект промышленной ветроэлектростанции мощностью 75 МВт, которая войдет в ЭЭС Санкт-Петербурга и Ленинградской области. ВЭС будет состоять из 50 ветроустановок мощностью по 1,5 МВт каждая производства компании GE Wind Energy . Завершена разработка ТЭО, строительство станции начнется во 2-м полугодии 2005 г.

Строительство ВЭС поддерживает правительство Ленинградской области, которое готово предоставить участникам проекта налоговые льготы, в том числе на недвижимость и прибыль. Кроме этого, были внесены поправки в проект регионального закона "О поддержке использования нетрадиционных возобновляемых энергетических ресурсов в Ленинградской области", а также предусмотрены налоговые льготы для промышленных потребителей электроэнергии, вырабатываемой с помощью ветра (и иных возобновляемых источников), которые способны покрыть разницу между тарифами на электроэнергию из традиционных и нетрадиционных источников. Реализация проекта позволит также разработать нормативные документы и методики проектирования аналогичных ВЭС и создать механизм гарантированного возврата заемного капитала, привлекаемого для финансирования сооружения ВЭС.

Электроэнергетические системы будущего символически можно представить как на рис.2, где 1 - промышленные потребители, 2 - социально-бытовые потребители, 3 -традиционные крупные электростанции, 4 - малые ГТУ-ТЭЦ, 5 - мини- и микро-ГЭС, 6 - ВЭУ, 7 - солнечные электростанции, 8 - топливные элементы, 9 - поршневые двигатель-генераторы, 10 - накопители энергии, 11 - биогаз. Как видно из этого рисунка, ЭЭС будущего должны сочетать крупные источники электроэнергии, без которых проблематично электроснабжение крупных потребителей и обеспечение целесообразных темпов роста электропотребления, а также распределенную генерацию. Крупные электростанции имеют трансформацию на напряжения 110 кВ и выше и выход в основную сеть высших напряжений, осуществляющую транспорт электроэнергии до крупных центров потребления.

В то же время, как следует из вышеизложенного, должны получить существенное развитие установки распределенной генерации, в том числе на ВИЭ, которые устанавливаются в распределительной сети 6-35 кВ. Третий уровень составят мини- и микро-установки (мини- и микро-ГЭС, ВЭУ, солнечные электростанции, топливные элементы и т.п.), которые подключаются на напряжение 0,4 кВ и устанавливаются у небольших потребителей, например, в отдельных домах или даже в квартирах.

Технические особенности и проблемы.

Подобная трансформация ЭЭС будущего придает им положительные качества, однако создает и определенные проблемы. Основные изменения в ЭЭС в связи с появлением распределенной генерации сводятся к следующим:

  • Развитие распределенной генерации разгружает как основную, так и распределительную сеть, что способствует снижению потерь электрической энергии повышению надежности и устойчивости ЭЭС и вносит дополнительные возможности в реализацию рынков электроэнергии,освобождая пропускные способности связей .
  • В то же время, распределенная генерация - это новые элементы ЭЭС, во многом с новыми динамическими характеристиками и возможностями управления. Так, ВЭУ имеют переменный режим работы, который при больших суммарных мощностях ВЭУ может создавать проблемы при управлении режимами ЭЭС, регулировании частоты, требуется резервирование по мощности до 50% от мощности ВЭУ и др. . При очень сильном ветре ВЭУ останавливаются, что при больших их суммарных мощностях может оказаться экстраординарным возмущением в ЭЭС, могущим привести к нарушению устойчивости системы и каскадному развитию аварии . Малые ГТУ имеют уменьшенную, по сравнению с традиционными агрегатами тепловых и гидравлических электростанций, постоянную инерции, отличные от больших агрегатов характеристики систем регулирования . К настоящему времени имеются некоторые исследования влияния распределенной генерации на свойства ЭЭС в установившихся и переходных режимах, однако эта проблема находится еще в начальной стадии изучения и более-менее уверенные выводы и рекомендации делать пока преждевременно.
  • Неоднозначно и влияние распределенной генерации на качество электроэнергии по уровням напряжений. С одной стороны, наличие распределенной генерации в распределительной сети позволяет более стабильно поддерживать уровни напряжений в узлах за счет возможностей этих генераторов по генерированию реактивной мощности, в отличие от традиционных распределительных сетей, в которых потери напряжения тем больше, чем дальше от питающей подстанции высокого напряжения. С другой стороны, обнаружены явления, получившие название фликкера в англоязычной литературе и связанные с быстрыми колебаниями напряжения. Характерно, что фликкер развивается при резком снижении напряжения в узле присоединения малого генератора, особенно если генератор асинхронный .
  • Неоднозначно также влияние распределенной генерации на генерацию высших гармоник в системе. С одной стороны, наличие распределенных генераторов снижает их уровень. Но, с другой стороны, многие малые установки, например, ВЭУ, высокочастотные ГТУ, подключаются к распределительной сети через преобразователи переменного тока в постоянный и обратно, которые генерируют в сеть высшие гармоники .
  • Подключение источников распределенной генерации к распределительной сети увеличивает токи короткого замыкания, что может потребовать замены коммутационных аппаратов, изменения настроек защит и др. .
  • Появление распределенной генерации усложняет диспетчерское управление ЭЭС, смещая его функции на распределительную сеть. Проблема при этом заключается в высокой неопределенности режимов работы распределенной генерации вследствие неравномерности загрузки агрегатов, отсутствия текущей информации об их работе и др. В последнее время появился ряд разработок, в которых предпринимаются попытки решения этой проблемы на основе распределенной системы диспетчерского управления с использованием Интернет-технологий . В связи с этим появилось понятие "виртуальная электростанция", которая условно объединяет распределенную генерацию посредством распределенной Интернет-системы управления.
  • Распределенная генерация усложняет также систему релейной защиты и автоматики, противоаварийного управления ЭЭС . Распределительная сеть с появлением в ней установок распределенной генерации приобретает черты основной сети, т.е. в ней возникают проблемы устойчивости и др., что требует разработки устройств автоматики, аналогичных основной сети. При потере электроснабжения от питающей подстанции основной сети имеется возможность выделить установку распределенной генерации на близкую по мощности нагрузку, что обеспечит электроснабжение ответственных потребителей. Эта проблема в англоязычной литературе получила название "Islanding", она достаточно активно изучается и имеет ряд составляющих, в частности: определение состава потребителей, подключаемых к малому генератору при выделении; разработка принципов и конкретных устройств соответствующей автоматики; учет конкретных условий работы распределенных генераторов и др.
  • Следует отметить и такой негативный фактор ВЭУ, как генерирование инфразвука при вращении лопастей. Эта проблема во многом решается за счет специальной конструкции лопастей .
  • Все перечисленные особенности распределенной генерации требуют тщательного изучения свойств и характеристик различных установок, разработки их математических моделей работы в различных режимах. Требуется разработка новых методов анализа режимов работы систем электроснабжения, включающих распределенную генерацию, их надежности, устойчивости и т.п. Необходима также разработка математических моделей и методов планирования развития систем электроснабжения и ЭЭС с учетом распределенной генерации .

Заключение

1. Тенденции развития электроэнергетики в мире связаны не только с ростом масштабов производства электроэнергии на традиционных крупных электростанциях, но и с увеличением доли распределенной генерации. Эти тенденции определяются необходимостью адаптации потребителей и развития ЭЭС к рыночной неопределенности, появлением новых высокоэффективных энергетических технологий, ростом доли высококачественных видов топлива, ужесточением экологических требований, стимулирующем использованием ВИЭ при протекционистской политике государств.

2. Мировые тенденции органичного сочетания централизованной и распределенной генерации характерны и для России. При этом, если экономические условия ля развития малых ГТУ-ТЭЦ достаточно приемлемы и в настоящее время, то для развития распределенной генерации на ВИЭ пока не созданы необходимые экономические, законодательные и организационные условия. Для России создание таких условий является одной из важнейших задач.

3. Рост доли распределенной генерации в ЭЭС не только имеет положительные стороны, но и создает определенные технические проблемы, которые связаны с изменением свойств систем, возможностей управления ими в нормальных и аварийных условиях. Эти проблемы решаемы, однако при этом усложняется диспетчерское и автоматическое управление ЭЭС, требуется разработка новых математических моделей по обоснованию развития ЭЭС и систем электроснабжения, анализу их режимов и управлению ими.

Литература

1. Комплексные проблемы развития энергетики СССР / Л.С.Беляев, Ю.Д.Кононов, А.А. Кошелев и др.; Отв. ред. А.А.Макаров и А.А.Папин. Новосибирск: Наука, 1988, 288 с.

2. Энергетика XXI века: Условия развития, технологии, прогнозы / Л.С.Беляев, А.В. Лагерев, В.В. Посекалин; Отв. ред. Н.И.Воропай. Новосибирск: Наука, 2004, 386 с.

3. Воропай Н.И. Малая энергетика в рыночной среде: анализ требований и условий развития// ТЭК, 2003, № 2, с. 97-98.

4. Усачев И.Н., Историк Б.Л., Школянский Ю.Б., Лунаци М.А. Малая и нетрадиционная энергетика России // Новости электротехники, 2003, № 3, с. 54-57; № 4, с. 77-79.

5. Фаворский О.Н., Леонтьев А.И., Федоров В.А., Мильман О.О. Эффективные технологии производства электрической и тепловой энергии с использованием органического топлива // Теплоэнергетика, 2003, № 9, с. 19-21.

6. Bayegan M.A. Vision of the Future Grid // IEEE Power Engineering Review, 2001, Vol.21, №12, p. 10-12.

7. Безруких П.П. Нетрадиционные возобновляемые источники энергии // Энергетическая бе-зопасность и малая энергетика. XXI век. Сб. докл. Всерос. н.-т. конф. Санкт-Петербург, 3-5 декабря 2002 г., с. 30-45.

8. Ackermann Th., Andersson G., Soder L. Distributed Generation: A Definition // Electric Power System Rescarch, 2001, Vol.57, № 4, p. 135-204.

9. Dugan R.C., McDermont Th.E. Distributed Generation // IEEE Industry Application Magazine, 2002, Vol.33, № 2, p. 19-25.

10. Development of dispersed generation and consequences for power systems / CIGRE Working Group C6/01 // Electra, 2004, № 215, p. 39-49.

11. The European Cogeneration Study. EU-Project "Future COGEN", № 4. 10301/P/99- 169/Final Publishable Report, Brussels, 2001, 88 p.

12. Карасевич А.М., Сеннова Е.В., Федяев А.В., Федяева О.Н. Эффективность развития малых ТЭЦ на базе газотурбинных и дизельных энергоустановок при газификации регионов // Теплоэнергетика, 2000, № 12, с.35-39.

13. Беляев Л.С., Воропай Н.И., Кощеев Л.А. и др. Долгосрочные тенденции развития электроэнергетики мира и России //Изв. РАН. Энергетика, 2004, № 1, с. 3-13.

14. Fairley P. Steady as the Blows // IEEE Spectrum, 2003, № 8, p. 35-39.

15. Slootweg J.G., Kling W.L. Is the Answer Blowing in the Wind. // IEEE Power and Energy Magazine, 2003, Vol. 1, № 6, p. 26-33/

16. Энергетическая стратегия России на период до 2020 года / Приложение к общ.-дел. журналу "Энергетическая политика". М.:ГУ ИЭС, 2003, 136 с.

17. Клавдиенко В.П. Экономические стимулы использования возобновляемых источников энергии // Энергия: экономика, техника, экология, 2004, № 6, с. 14-19.

18. Запад финансирует российскую ветроэнергетику // Мировая энергетика, 2005, № 3, с.92.

19. Еремин Л.М. О роли локальных генерирующих источников небольшой мощности на рынке электроэнергии // Энергетик, 2003. № 3, с.22-25.

20. Chiradeja P., Ramakumar R. An Approach to Quantify the Technical Benefits of Distributed Generation // IEEE Trans. Energy Conversion, 2004, Vol. 19, № 4, p.764-773.

21. Donelly M.R., Dagle J.E., Trudnowski D.J., Riders G.J. Impact of the Distributed Utility on Transmission System Stability // IEEE Trans. Power Systems, 1996, Vol.11, № 2, p.741-746.

22. Jenkins N., Allan R., Grossley P., Kirschen D., Strbac G. Embedded Generation. London; IEE, 2000, 273 p.

23. Воропай Н.И., Ефимов Д.Н. Требования к противоаварийному управлению ЭЭС с учетом изменения условия их развития и функционирования // Надежность либерализованных систем энергетики. Новосибирск: Наука, 2004, с.74-84.

24. Batrinu F., Chicco G., Pomrub R., Postolache P., Toader C. Current Issues on Operation and Management of Distributed Resources // 5th Int. World Energy System Conf., Oradea, Pomania, May 17-19, 2004, p.31-36.

25. Дмитриева Г.А., Макаревский С.Н., Хвощинская З.Г. Результаты моделирования работы неуправляемой ветроэлектрической установки в энергосистеме большой мощности // Электричество, 1998, № 8 , с. 19-24.

26. Barker Ph. P., De Mello R.W. Determining the Impact of Distributed Generation on Power Systems: Part 1 - Radial Distribution Systems // 2000 IEEE PES Summer Meeting, Seattle, WA, USA, July 11-15, 2000, p.222-233.

27. Dany G. Impact of Inercasing Wind Generation on the Electricity Supply System // IAEW-FGE-Annual Report 2003, Aachen, Germany, 2003, p. 101-103.

28. Гуревич Ю.Е., Мамиконянц Л.Г., Шакарян Ю.Г. Проблемы обеспечения надежного электроснабжения потребителей от газотурбинных электростанций небольшой мощности // Электричество, 2002. № 2, с.2-9.

29. Papathanassiou S.A., Hatziargyriou N.D. Technical Requirements for the Connection of Dispersed Generation to the Grid // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p.134-138.

30. Jimeno J., Laresgoiti I., Oyarzabal J., Stene B., Bacher R. Architectural Framework for the Integration of Distributed Resources // 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, June 23-26, 2003, p.91-96.

31. Фишман В. П. Построение систем РЗиА при наличии собственных источников электроэнергии у потребителей // Новости электротехники, 2002, № 6(18), с.34-37.

32. Funabashi T. Study on Protection and Control of Dispersed Generation // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p. 131-133.

33. Meliopoulos A.P.S. Distributed Energy Sources: Neesds for Analysis and Design Tools // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p.143-147.

34. Hatziargyriou N.D., Donnelly M., Papathanassiou S.A., Pecas Lopes J.A. e.a. Modeling New Forms of Generation and Storage // Electra, 2001, № 195, p.55-63.

Не так давно в российских реалиях было выявлено, что применение распределенной генерации способствует улучшению промышленной производительности. Поэтому в экономике страны эта отрасль набирает обороты.

О текущей ситуации

На данный момент энергетика находится в непростом положении. Согласно официальным данным, износ линий электропередачи в ЕС составил 25 %, а подстанций - 45 %. 40 % тепловых сетей нуждается в ремонте, а 15 % пребывают в крайне плохом состоянии.

В России

Энергосбережение в Российской Федерации отличается новыми направлениями деятельности. И в первую очередь это выражается во все более часто применяемых источниках распределенной генерации. Это понятие обозначает объекты малой энергетики менее 25 МВт. Установки распределенной генерации справляются с задачами местного обеспечения электроэнергией отдельных построек и районов. Помимо стандартных энергетических источников (угля, мазута, газа) сюда включают и альтернативные их виды.

Новые возможности

Распределенная генерация электроэнергии актуальна в самых разнообразных организациях. Ее применяют и в сфере обслуживания (в отелях, санаториях), и на объектах сельскохозяйственной деятельности. На данный момент юридические лица в стране стараются мобилизовать ресурсы, которыми обладают, и при этом свести к минимуму расходы. А электроэнергия является довольно большой статьей расходов. Развитие распределенной генерации - прекрасный выход из положения для предприятий. Особенно это касается крупнейших промышленных предприятий. С точки зрения специалистов, объекты распределенной генерации спасают многих промышленников в ходе изменения положения в энергетике провинций.

Однако на данный момент они составляют лишь долю в размере 8 % в электроэнергетике государства. Ниша распределенной генерации энергии начинает свое формирование. Положительные примеры ее развития встречаются редко. Одним из самых ярких объектов является пункт малой распределенной генерации в Среднеуральском медеплавильном заводе.

Проекты по ее сооружению были реализованы на привлеченные от инвесторов средства. Далее владелец реализовал эксплуатацию объекта распределенной генерации на основе энергосервисного контракта. Важным условием позитивного будущего электроэнергетики является экономия ресурсной базы. Когда энергосервисный контракт завершается, объект распределенной генерации становится имуществом организации. Это происходит через 9 лет, и тогда организация сама пользуется объектом. Такая схема служит прекрасным инструментом инновационной поддержки распределенной генерации. Ее стоит использовать на всей территории Российской Федерации.

О «зеленых» источниках

Открытие источников распределенной генерации посредством подписания подобных соглашений приводит к тому, что организация практически не тратит своих ресурсов. Помимо этого, интерес инвесторов заключается в том, чтобы источник работал эффективно. Такой вывод подтверждается опытом Среднеуральского медеплавильного завода. На текущий момент станция загружена на 92 % в среднем в году. А когда срок действия соглашения истечет, организация получит в имущество свою собственную мини-ТЭЦ, которая будет работать на протяжении не менее 20 лет. О возрастающей популярности свидетельствуют все чаще появляющиеся связанные с распределенной генерацией ООО. Так, одно такое общество появилось в Ростове. ООО «Распределенная генерация» занимается передачей и распределением пара и горячей воды, а также еще 102 направлениями деятельности.

В случаях, когда после истечения срока действия соглашения с инвестором компания пользоваться источником распределенной генерации не может, то соглашение продлевается. И она продолжает экономить на энергоресурсах.

Проектирование распределенной генерации осуществляется таким образом, что при передаче продукта энергия теряется в минимальных количествах. Также КПД у современных электростанций составляет более 90 %. Мини-ТЭЦ остаются более чистыми в экологическом плане. Проектирование распределенной генерации позволяет добиться минимума шума при работе объектов. Вредные вещества при этом практически не выбрасываются. Этим обусловлены связанные с распределенной генерацией тенденции.

Для блочно-модульной вариации не требуется большой площади. Ее сочетают с минимумом строительных работ. Распределенная генерация в России все чаще представляется установками данного типажа. Блочно-модульные объекты считаются наиболее надежными.

Новый технологический уклад

С учетом трудностей, связанных с привлечением денежных средств к возведению больших электростанций, возведение мини-ТЭЦ представляется все более привлекательным и эффективным действием. Большой популярностью пользуется ООО «Евросибэнерго-Распределенная Генерация». Данная организация занимается распределением пара и горячей воды, а также осуществляет деятельность по 20 направлениям. Есть у ООО «Евросибэнерго-Распределенная генерация и два филиала - в Красноярске и Нижнем Новгороде.

На данный момент закупки компания направляет на удовлетворение своих подразделений, включая дочерние. ООО «Евросибэнерго-Распределенная Генерация» (нижегородский и красноярский филиалы) заинтересовано во взаимовыгодных отношениях с партнерами. Чтобы работа по данному аспекту шла плодотворно, на официальном сайте предприятия была опубликована страница о тендерах. ООО «Евросибэнерго-Распределенная Генерация» анонсирует свои закупки на протяжении года, публикуя их в соответствующем разделе на сайте.

И это не единственная крупная компания, осуществляющая свою деятельность в такой сфере. ООО «Интер РАО - Распределенная Генерация» - крупный холдинг, занимающийся повышением экономической активности в Российской Федерации. Он вносит активный вклад в развитие новой энергетики. ООО «Интер РАО - Распределенная Генерация» прошло путь от посредника до крупнейшей энергетической компании.

Трудности

Тем не менее, во внедрении мини-ТЭЦ есть несколько трудностей. Нередко взаимоотношения большой и распределенной энергетики заходят в тупик. Это было высказано на II Всероссийской конференции «Развитие малой распределенной энергетики в России». Все дело в том, что стоимость электроэнергии стала невыгодной, она растет. Большая энергетика не привлекает много инвестиций, а основная часть денежных средств приходит от государства - около 85 %. А важнее всего то, что не происходит запуска конкуренции, поскольку имеется централизованная энергетика. Если не изменить число посредников, то она и не появится. Участники конференции пришли к выводу, что данный вопрос разрешает распределенная генерация. Именно она растет за счет частных инициатив, а конечную продукцию продает по реальной цене.

В мире

Во множестве государств отмечается тенденция к использованию источников распределенной энергетики. Российская Федерация лишь встала на этот путь, но в самых отдаленных ее районах именно распределенная генерация станет точкой роста энергетики. На данный момент решаются вопросы об использовании ее в коммунальном хозяйстве, чтобы компенсировать расходы на производстве.

Правильно примененная распределенная энергетика откроет энергетический потенциал страны и окажет самое позитивное влияние на российскую экономику. Сейчас, если в мире доля малой генерации составила 10-20 %, то в России она заняла 1,5 %.

О законах

Для развития данной сферы необходимы законодательные нормы, которые бы регулировали эту сферу. Развитие распределенной генерации в РФ отличается стихийностью, и на эффективность к лучшему это не влияет. Действия потребителей и поставщиков не скоординированы.

Чтобы процесс регулировало законодательство, нужно реализовать один из двух вариантов. В первом предполагается, что нужно внести коррективы в текущее законодательство, создав раздел, посвященный распределенной генерации. А во втором предусмотрено создание нового ФЗ, чтобы в нем будут отражены все необходимые термины и нормы.

Важно, чтобы закон урегулировал режимы работы малых ТЭЦ, нюансы в их деятельности и так далее. На сегодняшний день на территории страны работает около 50000 источников малой энергетики, и количество их неуклонно растет. Потребители формируют на них спрос, что ведет к диверсификации в этой отрасли. Когда будет разработан закон, регулирующий деятельность мини-ТЭЦ, понадобится и целый ряд пакетов от Правительства РФ, федеральных органов власти. Все эти документы будут определять цены, стимулировать развитие распределенной генерации.

О платформах

Переход на распределенную энергетику с трудом отслеживается государством. Нет официальной статистики, а без этих данных формирование политики невозможно. Есть лишь наиболее общие сведения о том, что мини-ТЭЦ развиваются в недостаточной мере. Поэтому на состоявшейся конфедерации гендиректор ЗАО «АПБЭ» подчеркнул, что в первую очередь всем необходимо заполнять эту отрасль, и лишь затем вводить большие объекты генерации для обеспечения покрытия спроса. Российские реалии отличаются тем, что централизация в энергетики проявилась в них в гораздо более яркой мере, нежели в иных государствах. В то же время страна обладает большим потенциалом в области большой энергетики. Территориальная особенность государства является самым настоящим полем для применения местных объектов энергетики. На данный момент страна обладает технологической платформой, которая отличается большим числом участников - 168 организаций. Помимо этого, появились новые кластеры в такой сфере. В России существует множество примером успешных проектов по распределенной генерации. К примеру, это проекты предприятия «Альтэнерго», комплексы Кузбасса, Ярославля и так далее.

Что касается «АПБЭ», оно сформировало свою схему по мини-ТЭЦ, которая предусматривает то, что большая энергетика и коммунальное снабжение будет реализовано в одном объекте. Это прямой путь к новейшим перспективам увеличения производительности в сфере энергетики. Существующий баланс заполняется благодаря новому способу производства электроэнергии. Стандартные котельные замещаются установками когенерации.

Подобная процедура оказывает самое позитивное влияние на отрасль в целом. Во-первых, экономится топливо. Во-вторых, улучшается ситуация, связанная с энергетикой, в провинции, где в основном имеются котельные, а когенерации не имеется. Но на текущий момент закон запрещает совмещать сетевой бизнес с генерацией. Необходима отмена данного положения, нужна поправка в отношении мини-ТЭЦ. Также важно, чтобы законодательство способствовало конкуренции между большой и малой энергетикой. Для этого нужно заняться ценообразованием. Важно, чтобы сбытовые предприятия закупали электроэнергию у малых объектов, но по стоимости, которая не превысит цены на оптовом рынке. Нужно, чтобы закупка осуществлялась по оптовой цене плюс сетевая составляющая. Все это приведет к тому, что запустится механизм серьезной конкуренции между малыми и крупными объектами энергетики. Весь этот процесс приведет к появлению возможностей продавать электроэнергию потребителям по розничной цене. Делаться это будет за счет излишком продукции. На данный момент таких возможностей у потребителей не имеется.

Михаил Козлов, директор по инновациям и ВИЭ ОАО «РусГидро» заявил, что у него складывается ощущение, что время применения источников возобновляемой энергетики в стране еще не пришло. Имеется лишь ориентир на государства Европы, в которых данный вопрос стал насущным. Также он отметил, что есть трудности в официальной поддержке, нужно резервировать мощности. А это возможно тогда, когда будет достигнут достаточный уровень производства электроэнергии в возобновляемых объектах.

Отсутствует логика в импорте необходимой аппаратуры. Необходимо развивать российскую технологическую базу. Тарифы ВИЭ растут из-за инфляции и иных факторов экономики. На данный момент, в документации, подготовка которой ведется в РФ, отмечается государственная поддержка тарификации, чтобы эффективность для инвестора была обеспечена. Это важный момент для России, так как таким образом будет сформирован стратегический запас.

На данный момент стали необходимы вложения с целью спустя десять-двенадцать лет получить снижение цен источников ВИЭ. К примеру, «РусГидро» на Камчатке имеет три станции - одну в отдаленной области, а две - в центральной части, и они обеспечивают Петропавловск тридцатью процентами от общей электроэнергии. Ранее больший объем давали станции на мазуте, а теперь они переведены на газ. Ранее тарифы станций составляли шесть рублей для промышленников и три рубля для населения. Остальная часть - государственные субсидии. Топливная часть станций составляла 2,3 рубля, а в ГеоЭС - 1,8 рубля. Тарифы, обеспеченные геотермальными станциями, были ниже топливной части соседних стандартных станций. Данная ситуация уникальна, так как в данном регионе имеется лишь привозное топливо. Но, согласно расчетам, к 2020 году с учетом воплощения государственных программ тарифы для населения не должны стать выше двух процентов. В отдаленных участках страны энергетика всегда распределенная. Масштабных источников в планах нет, и происходит развитие проектов ветроэнергетики, геотермальной, мини-ТЭЦ, солнечных. Планов существует большое количество, и присутствуют точки, в которых воплощение их произойдет без государственного вмешательства. Но, тем не менее, этого будет недостаточно, так как генерация составит около 1 ГВт, а этого не хватит для развития промышленности в регионе. Адекватного рынка в таком случае не сформируется, хотя и будет найдено около двух производителей, которые при данных объемах сумеют построить заводы. По это причине ВИЭ должно развиваться не только лишь в отдаленных областях.

Упоминая Дальний Восток, представитель «РусГидро» упомянул, что у компании есть «РАО Энергетические системы Востока», которое занимается снабжением электроэнергией населения данного участка. Источниками являются гибридные комплексы, солнце- и ветро-дизели. Среди главных проектов, реализованных в регионе, отмечаются пилотные мощности по солнечным станциям - 10-30 кВт, по генераторам - около 300 кВт. В холодной Якутии солнечные станции являются наиболее эффективными, поскольку сам климат предполагает большое количество солнечных лучей. По этой причине примеры, реализованные в населенных пунктах Якутии, демонстрируют прекрасную выдачу.

Еще одна точка зрения, прозвучавшая на конференции, свидетельствовала о том, что не существует точного понятия распределенной генерации. Есть обширная область энергетики, которая обладает децентрализованными признаками. По сути она является автономной энергетикой. Она предоставляет потребителям выбор - использовать продукт централизованной системы энергоснабжения или продукцию распределенной генерации, руководствуясь идеями экономии.

Широкое развитие в западных странах получила и иная отрасль - индивидуальная генерация. Она предполагает использование совершенно иных типов технологии. Если в распределенной генерации применяется когенерация, то здесь речь идет о тригенерации. Когда звучит призыв о поддержке распределенной генерации, ряд бизнесменов задается вопросом, почему они должны заниматься поддержкой чьего-то бизнеса? Но при развитии своих собственных технологий и генерировании добавленной стоимости она оказывается выше отданной тем, кто занялся мини-ТЭЦ. Большую роль в развитии распределенной генерации играет научно-технический прогресс. Устаревшая аппаратура никак не поможет в новых рекордах. Развитие когенерации на основе котельных станет эффективным, только если будет иметься необходимая техника. Газотурбинное машиностроение страны обладает возможностями для выпуска продукции, которая потребуется в данном процессе.

Но во внедрении всех этих планов присутствуют и иные препятствия. До конца неизвестно, что именно придаст когенерация энергосистеме, как последняя отреагирует на новое явление. Потребуется создание микрогридов, систем, решающих ряд вопросов, связанных с пиковой мощностью и надежностью. Такие проекты уже воплощены в жизнь в Германии и в Японии. И при этом в данных объектах около 40-50 % стоимости аппаратуры дотировано официальной властью.

В значительной мере положение в российской действительности не изменится до момента, пока в области энергетики делается ставка на увеличение числа потребителей газа и угля. Исключение составляют лишь участки, которые изолированы от ЕЭС, где имеется поле для выбора альтернативных путей развития. Там и находятся объекты распределенной энергетики. Повышенные цены на продукцию ускоряют окупаемость подобных проектов в области Красноярска, Алтая и Бурятии.

Слишком медленно развивается нормативно-правовая база, которая бы обеспечивала развитие альтернативной энергетики. Хотя еще в 2010 году было введено несколько новых актов, которые регулировали особые цены для договоров купли-продажи мощностей в области ВИЭ, особо сильного влияния на текущую ситуацию это не оказало.

Электроэнергия, которая была выработана на источниках распределенной генерации, в крайне маленьком объеме выставляется на продажу. Все дело в том, что в стране значительно тормозит процесс развития электроэнергетики тот факт, что трудно продать в сеть электроэнергию с альтернативных источников. Помимо этого, в стране существуют десятки предприятий, которые производят аппаратуру для генерации энергии нетрадиционными методами. Но рынок сбыта в данной области остается узким. Чаще всего он представлен частными лицами, которые устанавливают соответствующее оборудование в загородных домах. Также имеются организации, которые заинтересованы в том, чтобы повысить свой «зеленый» статус. Больше всего спроса было выявлено на тепловые насосы и солнечные батареи.

Вице-президент по работе с государственными органами ОАО «Фортум» Сергей Чижов отметил, что важнейшей задачей ОАО является воплощение в жизнь крупной программы по инвестициям. На данный момент объем вложений составляет больше 2,5 млрд евро. Организация продолжает идти по стратегической линии. Она ввела в строй больше 600 МВт из 2400, которые указаны в планах. Ожидается ввод первой мощности на Няганской ГРЭС. Воплощение программы по инвестициям приведет к увеличению изначальных мощностей в плане электроэнергии до 5300 МВт, что составляет 85 % в сравнении с 2007 годом.

На данном пути предприятие столкнулось с рядом трудностей, которые понизили интерес инвесторов к области электроэнергии. Нередко противоречивость государственных решений в данной отрасли приводит к появлению неопределенности на рынке. Сложно планировать целостность модели развития электроэнергетики, не учитывая мировой тенденции, разработок, касающихся возобновляемых объектов топлива, в числе которых Fortum. Не имеется действенных механизмов формирования отрасли в долгосрочной перспективе. Например, политики, нацеленной на то, чтобы повысить доходность от продажи газа при понижении доходов от реализации электроэнергии.

Особое внимание стоит уделить тому факту, что отсутствует стимул формирования когенерации. Практика показала, что инвесторы к данной области имеют мало интереса, так как сам рынок обладает рядом непривлекательных особенностей. Власти в условиях нерегулируемых законом реалий обустраивают новые котельные, так как в экономии топлива особого смысла не видят. А законодательство стимулирует «котельнизацию» государства. По этой причине нужен механизм, который бы поддерживал когенерацию. Необходим запрет на возведения котельных в крупнейших областях теплопотребления.

Заключение

С учетом трудностей при инвестировании возведения больших электростанций строительство объектов распределенной генерации представляется эффективным и вполне реальным. Наступила пора энергетической революции в стране. Возникло множество экономических и потребительских к тому предпосылок. Если обеспечить экономию ресурсов, будущее энергетики в России будет безоблачным.

Энергетика сегодня

Поэтому в традиционной энергетике по функциональному назначению и территориальному расположению можно четко выделить три сегмента:

  1. Центры производства электроэнергии
  2. Линии электропередачи большой мощности
  3. Зоны потребления электроэнергии и местные распределительные сети

Федеральный закон N 190-ФЗ от 27.07.2010 "О теплоснабжении" - выделены объекты малой когенерации и правила ее работы

Постановление Правительства РФ от 22.10.2012 N 1075 "О ценообразовании в сфере теплоснабжения" - определены правила назначения тарифов на тепловую энергию с объектов малой генерации.

Постановление Правительства РФ N 1221 от 31.12.2009 "Об утверждении Правил установления требований энергетической эффективности товаров, работ, услуг при осуществлении закупок для обеспечения государственных и муниципальных нужд" - введено требование создания или модернизации источников тепловой энергии мощностью более 5 Гкал только в режиме когенерации.

Предпосылки

Трудности

  • Стоимость

На 2011 год большинство из предлагаемых решений в малой энергетике недоступны её главным потребителям - малым удаленным предприятиям и малым населенным пунктам России , по цене, по эффективности отношения производимой мощности к массе оборудования. К тому же, предлагаемое, как элементы малой энергетики, серийно поставляемое импортное оборудование, как правило, не нацелено на использование источников энергии , имеющихся на местах.

Варианты реализации

  • Контейнерные энергоблоки
  • Мобильные энергоблоки
  • Сборные энергоблоки

Схожие понятия

При наличии соответствующих средств автоматического удаленного управления объединение распределённых генераторов энергии может выступать в качестве виртуальной электростанции.

В качестве синонима может использоваться термин «децентрализованное производство энергии», который не отражает специфической особенности - наличие общей сети обмена электро- и тепловой энергии. В рамках концепции децентрализованного производства электроэнергии возможно наличие общей сети электроэнергии и системы местных котельных , производящих исключительно тепловую энергию для нужд населённого пункта/предприятия/квартала.

Распределённое производство энергии (англ. Distributed power generation) — концепция строительства источников энергии и распределительных сетей, которая подразумевает наличие множества потребителей, производящих тепловую и электрическую энергию для собственных нужд, а также направляющих излишки в общую сеть (электрическую или тепловую).

Взаимная выгода

И бизнес, и государство - бенефициары распределенной энергетики. Бизнес следит за повышением эффективности использования топливных ресурсов, он заинтересован не только в оптимизации затрат, но и в управлении этими затратами, в укреплении своей рыночной устойчивости. Для бизнеса особое внимание к снижению транспортной составляющей в стоимости электроэнергии наполнено вполне конкретным конкурентным смыслом.

Государство же заинтересовано в омоложении парка генерирующего и транспортирующего оборудования на национальной территории. Обновление этого парка сделает энергетические сети более доступными, будет способствовать развитию бизнеса и созданию новых рабочих мест. Кроме того, государство заинтересовано и в минимизации расходов бюджета на обеспечение ЖКХ разными видами энергии. Для этого оно стремится нормировать необходимые расходы и предпринимать меры для их снижения. А это означает и необходимость наращивать использование технологий когенерации.

Где расположиться?

Объекты распределенной энергетики могут быть расположены как в зонах централизованного энергоснабжения, так и на изолированных территориях, где нет электросетей. В первую очередь объекты будут находиться там, где предприятиям в силу своей производственной деятельности удобно использовать собственную генерацию. К примеру, на объектах добычи полезных ископаемых, мелких производствах, аварийно-спасательных службах и т.д.

Кроме того, объекты распределенной генерации возникают там, где бизнес объявляет государству о росте нагрузок при уже имеющемся энергодефиците, и там, где в коммунальном энергоснабжении востребовано внедрение когенерационных установок. (К слову, наибольшей эффективности при вводе в действие новой мощности можно добиться, если использовать тригенерацию: в таком случае, помимо электроэнергии, эксплуатирующая компания получает в распоряжение пар для отопления и холод взамен кондиционеров, используемых для охлаждения оборудования летом.)

Иногда крупный бизнес сам решает проблемы энергообеспечения. Можно вспомнить Ново-липецкий металлургический комбинат, Магнитогорский металлургический комбинат и другие. Чем меньше - тем лучше Можно остановиться на результатах исследования, которое выполнило Агентство по прогнозированию балансов в энергетике еще в 2011 г. Речь идет не только об анализе существующего состояния в обеспечении электроэнергией, но и о путях повышения надежности электроснабжения проблемных энергоузлов.

В работе рассматривались наиболее дефицитные по мощности энергорайоны. В этих районах выбирались энергоузлы с растущей нагрузкой или несоответствующие нормативным требованиям электроснабжения, в которых уже планируется строительство подстанциий и генерирующих мощностей. В итоге было отмечено, что основной фактор, определяющий возможность сокращения дефицитов мощности в энергорайонах - это развитие распределенных источников малой и средней генерации, приближенных к потребителю, а также всемерное развитие когенерации. Было предложено строительство восьми электростанций в диапазоне мощности от 20-24 МВт до 200–250 МВт, причем наибольшее количество станций должно было иметь малую мощность.

Эффективность новых электростанций напрямую зависела от установленной мощности. До 25 МВт станции были эффективны даже без отпуска тепла, очевидно, что с отпуском тепла и с продажами на розничном рынке они тем более они будут эффективны. Если станция выше 25 МВт, расчеты по сравнительной эффективности инвестиционных проектов (речь шла как о строительстве новых электростанций, так и о расширении существующих) показали, что сроки их окупаемости будут слишком велики.

Следует понимать, что строительство новых электростанций частными инвесторами существенно снижает объем необходимого электросетевого строительства, а значит и инвестиционную нагрузку на Федеральную сетевую компанию и Россети. Кроме того, оно укрепляет надежность электроснабжения проблемных энергоузлов, а также формирует социальные выгоды, такие как занятость и новые рабочие места.

Сравнить масштаб

Сегодня можно утверждать, что распределенная энергетика как явление в нашей стране состоялась. За первую половину 2013 г. Совет рынка выдал подтверждение на работу на розничном рынке 22 организациям распределенной генерации. По данным газеты «Коммерсантъ», к имеющимся на 2011 г. 1,5 ГВт установленной мощности, распределенная энергетика прирастет к 2014 г. еще 500 МВт.

Распределенная энергетика, несомненно, будет развиваться и дальше, поскольку на рынке существуют участники, заинтересованные в этом процессе. К примеру, ОАО «Россети» выступило с заявлением, что планирует активное участие в развитии платформы малой и распределенной генерации.

Довольно часто звучит вопрос: а надо ли опасаться развития распределенной энергетики?

Не надо. Даже если доля распределенной энергетики достигнет размеров, сопоставимых с мировыми, а это 12,5 % от общей выработки электроэнергии, это обстоятельство не может снизить экономическую эффективность работы Единой энергосистемы. Напротив, надежность электроснабжения будет укрепляться в связи с созданием новых объектов распределенной генерации, нагрузка сетевых компаний снизится и это скажется на тарифах.

Играть по правилам

Тем, кто планирует создание собственных объектов распределенной генерации, нужно обращать особое внимание на состав используемого оборудования. Если объекты распределенной генерации выйдут в сеть, а они обязательно будут к этому стремиться, то они должны соответствовать требованиям Системного оператора.

Сегодня же инвесторы часто покупают оборудование, не соответствующее требованиям, а потом разводят руками - мы уже купили, что делать? Приходится его дорабатывать. Чтобы избежать подобных трудностей, необходимо, чтобы требования Системного оператора были, во-первых, разумно-достаточными, а, во-вторых, понятными для всех участников рынка.

Энергомашиностроительной отрасли следует быть внимательной к развитию распределенной энергетики, продемонстрировать готовность предложить необходимое оборудование. Кроме того, нужно выработать типовые решения по составу оборудования, добиться его унификации для достижения легкости в эксплуатации, в том числе в удаленных и труднодоступных местах.

Также следует описать правила игры с субъектами распределенной энергетики на рынке и стремиться к упрощению, ускорению регламентов согласования введения новых объектов.

Николай Копылов, директор Уральского филиала ЗАО «Агентство по прогнозированию балансов в энергетике» (г. Екатеринбург)

В настоящее время в мире складывается новое направление экономики – так называемая распределенная энергетика. Что это такое? В чем преимущества новой отрасли перед традиционной энергетикой? Что она даст России и ее населению, особенно в регионах?

1. Потребность реорганизации российской энергетики назрела. Если обратиться к истории, то в период индустриализации в нашей стране, как известно, создавались крупные промышленные предприятия. Основой энергообеспечения стали мощные электростанции. Для резервирования и повышения их надёжности была создана Единая энергетическая система (ЕЭС).

Сегодня индустриальное развитие сменилось постиндустриальным, "стройки века" и появление новых гигантских потребителей энергии завершились. Государство уходит из сферы хозяйственной деятельности, в том числе складывает с себя полномочия по энергоснабжению и организации жилищно-коммунального хозяйства. Реформирование электроэнергетики фактически закончено, реформа ЖКХ не за горами - появился ряд крупных частных компаний, занимающихся вопросами муниципальной энергетики. При этом переход в условиях рыночной экономики на самофинансирование при государственном регулировании тарифов резко ограничил возможности развития электроэнергетики. В связи с этим объёмы старения энергетического оборудования значительно превышают объёмы технического перевооружения, реконструкции и ввода новых энергетических мощностей.

Обостряется проблема обновления электрических и тепловых сетей, потери в которых растут. Всё большую остроту приобретает вопрос устранения диспропорций между размещением генерирующих мощностей, возможностями тепловых и электрических сетей и проблемами топливообеспечения электростанций.

Две трети территории России не имеют централизованного электроснабжения, а это означает, что обеспечить электроэнергией и теплом потребителей можно только с помощью малой энергетики . На этих территориях строительство крупных электростанций в одних случаях нецелесообразно, в других - неоправданно с экономической точки зрения, в-третьих, невозможно из-за отсутствия средств на прокладку дорогостоящих теплоцентралей и сооружение линий электропередачи.

Централизованное энергоснабжение целесообразно для крупных нагрузок и для нагрузок с высокой плотностью энергопотребления. В случае же низкой плотности нагрузки капитальные затраты на тепловые и электрические сети резко возрастают, значительно увеличиваются потери энергии. Потери электроэнергии в сетях растут с каждым годом и уже вышли за двузначный порог.

Сегодня энергетика России характеризуется чрезвычайно высоким уровнем износа: износ линий электропередачи в ЕЭС превышает 25%, подстанций - 45%. В области теплоснабжения 40% тепловых сетей требуют ремонта, 15% находятся в аварийном состоянии, тепловые потери в сетях превышают 16%; коэффициент полезного использования топлива на уровне конечного потребителя в системах централизованного теплоснабжения колеблется в пределах 30-50% .

С учётом того, что российские электростанции в среднем имеют КПД≈33% , длина тепловых сетей ограничена размерами города из-за высоких линейных потерь; для территорий же с невысокой плотностью энергопотребителей, например, в зонах малоэтажной застройки, особое значение приобретает реализация распределённой энергетики.

2. Распределенная энергетика: сущность и преимущества. С распределённой энергетикой знакомы многие жители России - к ней относят котельные мощностью менее 20 Гкал (23,8 Мвт тепловой мощности), а некоторые специалисты опускают этот порог до 5-7 Гкал. По электрической мощности порог определён на уровне 25 МВт. Однако система котельных, решающая задачу жизнеобеспечения граждан в городах России, не позволяет использовать сжигаемое топливо для получения дорогой электроэнергии, в которую при существующих условиях перерабатывается не более 30% теплосодержания топлива.

Многие из указанных проблем могут быть решены за счёт строительства малых электростанций и энергоустановок, расширения использования местных и возобновляемых энергоресурсов. Малая, точнее распределенная энергетика, особенно важна для энергообеспечения объектов нулевой и первой категории (они должны иметь несколько источников энергоснабжения), для энергообеспечения районов с низкой плотностью нагрузки, для автономного энергоснабжения удалённых объектов, для снабжения в чрезвычайные периоды, а также в отдалённых, труднодоступных и малоосвоенных районах. В этом случае возникает возможность решить текущие проблемы энергообеспечения без необходимости "переделки" дорогого сетевого хозяйства.

Мини-ТЭЦ, максимально приближенные к потребителям, сводят к минимуму потери энергии в процессе её передачи. К тому же КПД у лучших современных малых электростанций составляет более 80% . Современные мини-ТЭЦ в сравнении с крупными электростанциями - экологически более чистые, имеют меньшие вредные выбросы и шумы. Благодаря компактности такие энергоустановки не требуют больших помещений и поставляются в блочно-модульном исполнении. При этом надёжность современных мини-ТЭЦ достаточна высока.

В условиях невозможности концентрации крупных инвестиций для строительства крупных электростанций строительство малых оказывается более реальным и выгодным, так как позволяет существенно сократить объём первоначальных капиталовложений и срок их возврата, снизить инвестиционный риск, уменьшить сроки возведения и ввода станций в эксплуатацию.

3. Потребность в новой энергетике на Дальнем Востоке. Развитие распределённой энергетики особенно важно для Дальнего Востока. Экономический район Дальнего Востока и Забайкалья (ДВиЗ) находится в гораздо более сложной ситуации, чем остальные, а его развитие в ближайшие годы связано в первую очередь с освоением природных богатств, что требует именно распределённого энергообеспечения .

Депопуляция территорий является своего рода интегральным индикатором сложности и невысокого качества жизни в регионах ДВиЗ. В условиях низкой плотности населения и удалённости от Европейской части России продолжение этого процесса чревато потерей этих территорий и фактически является геополитической угрозой территориальной целостности России. В результате возникает уникальная для мировой экономики ситуация, когда огромное по стоимости имущество - большие территории с природными богатствами - приносит не прибыль, а убыток, требует средств на охрану, а освоение территорий затруднено из-за отсутствия транспортной и энергетической инфраструктур.

Ситуация усугубляется отсутствием достаточного количества собственных средств, высоким уровнем износа коммунальной энергетики, когда непринятие мер сегодня может сделать невыгодным восстановление хозяйства завтра, поскольку уровень износа достигнет точки, когда повреждения и аварии в системе нарастают быстрее скорости ремонта, а его стоимость становится выше стоимости самой системы. Времени на раздумье фактически просто нет.

Значимость же Дальнего Востока для России сомнений не вызывает - регион имеет мировое геополитическое значение, роль которого в ближайшее время будет только расти. Стратегическое значение региона в связи с активно происходящими в мире и особенно на сопредельных с ним территориях экономическими, демографическими и политическими процессами, многократно возрастает.

Дальний Восток и Забайкалье занимают выгодное экономико-географическое положение в России и АТР, соседствуя с такими странами как Китай, Япония, США, КНДР, Республика Корея, Монголия. Одновременно регион находится на кратчайших путях из стран Западной Европы в страны АТР. К портам Дальнего Востока имеют выходы широтные транспортные системы Транссибирской и Байкало-Амурской магистральных железных дорог, пересекающих Евразию, а вдоль дальневосточных берегов проходит Северный морской путь. Хотя Россия по экономическому и демографическому потенциалу сегодня уступает США, Европейскому союзу и Китаю, ее геополитические позиции в АТР остаются значимыми. Основанием для такой оценки является уникальное географическое положение страны, её мощная сырьевая база, огромные территории, имеющийся научно-технический и сохранившийся военный потенциал.

В связи с возрастающей ролью АТР в мировой экономике увеличивается значимость российского Дальнего Востока и Забайкалья как контактной зоны по обеспечению внешнеэкономического, культурного и других видов сотрудничества в регионе. Для такой зоны хорошо приспособлена распределённая энергетика, чья технологическая база крайне разнообразна: малые и мини-ГЭС, небольшие энергетические установки на базе газотурбинных и парогазовых технологий, а также геотермальные тепловые и электрические станции, ветровые и солнечные энергетические и теплонасосные установки.

4. Возможности распределенной энергетики. Для отдалённых и труднодоступных районов, особенно для условий Крайнего Севера, могут быть использованы малые АЭС, эффективность которых базируется на отсутствии потребности в обслуживании в течение десятков лет и ликвидации крайне высоких издержек северного завоза топлива.

Бóльшая, чем у крупных электростанций, стоимость установленной мощности распределённой энергетики, компенсируется за счёт следующих факторов:

Снижения затрат и стоимости при массовом выпуске изделий в степени, не меньшей, чем снижение удельных затрат при росте единичной мощности блоков;
. снижение структурных затрат за счет достройки ЛЭП различных напряжений, что приводит к стоимости киловатта потребляемой мощности в точке потребления до 4 тыс. долл. взамен 2 тыс. долл. с учётом резервирования и оснащения необходимой современной автоматикой;
. ростом надёжности энергоснабжения потребителей за счёт значительного числа установок и местного характера размещения источников энергии;
. возможностью использования местных видов топлива и отходов (большая энергетика такой возможности лишена: достаточно представить, с какой площади нужно собрать отходы деревообрабатывающего производства или каков объём перевозок низкокалорийных топлив для станции мощностью в несколько ГВт!).

Распределённая энергетика имеет значительно больший инновационный потенциал по сравнению с мощными электростанциями. Если "большая" энергетика имеет предел по эффективности генерации на уровне 56% на парогазовых установках (ПГУ), да ещё в точке потребления нужно вычесть немалые сетевые потери, то малая энергетика позволяет получать просто фантастические по эффективности результаты за счёт использования возобновляемых видов энергии, утилизации потерь и отходов, принося дополнительные средства за услуги по их утилизации. Например, использование котельной даёт потребителю полезной мощности 0,5-0,6 Гкал на содержащуюся в сожжённом топливе одну Гкал, а использование энергии этого же количества топлива для привода теплового насоса, черпающего энергию из природного энергоаккумулятора (озера или реки), позволит дать потребителю 2,5-3 Гкал в наших широтах. Иными словами, выигрыш в эффективности может быть 5-кратным !

5. Конфигурация распределенной энергетики. Распределённая энергетика позволяет создать новое поколение энергетической техники. Приведём краткие описания подсистем и устройств, обеспечивающих работу распределенных систем.

1. Создание адаптивной энергетической техники. Встроенные датчики и автоматическое управление повышают эффективность и расширяют динамический диапазон, позволяют вести диагностику работоспособности в режиме реального времени, предсказывать отказы, реализовать нетрадиционные решения техники нового поколения, в частности - компрессоров и тепловых насосов.
2. Создание эффективных установок по переработке природного газа на основе поршневых химических реакторов сжатия.Такие установки позволяют нарабатывать синтетическое топливо в период низкого разбора газа, повышать коэффициент использования трубопроводных сетей и формировать запасы резервного топлива (вопрос с резервным топливом не решён даже в Московском регионе).
3. Создание однотопливных газодизелей с динамическим переключением на выработку синтетического моторного топлива. Динамическое переключение режимов поршневых групп на выдачу механической мощности или выработку синтетического моторного топлива позволяет увеличить коэффициент загрузки распределённой энергетики, используемой в пиковой зоне графика потребления.
4. Создание гибридной установки энергопотребителя. Таковая позволяет реализовать режим утилизации потерь энергопотребителя, получение энергии в любом виде и преобразование её к виду, необходимому для потребителя. Она также позволяет реализовать режим активного потребителя-регулятора и минимизировать издержки с учётом оптимизации выработки-закупки энергии.
5. Создание комплексного энергетического аккумулятора. Комплексный энергетический аккумулятор имеет несколько входов и рабочих тел, использует в качестве рабочих процессов изменение внутренней энергии рабочих сред, фазовые переходы, а также обратимые химические превращения, реализуемые за счёт использования встроенной гибридной энергоустановки.
6. Реализация сезонных и суточных энергоаккумуляторов. В условиях резко континентального климата позволяет использовать температурные пики (как суточные, так и сезонные) для аккумулирования низкопотенциального тепла. Могут использоваться упрощённые или модернизированные модели комплексного энергоаккумулятора, позволяющие подключить возобновляемые нестабильные источники энергии. В результате можно создавать системы со сниженным потреблением тепла или даже бестопливные энергетические системы.
7. Формирование энергологистических систем. В таких системах оптимизация энергетических потоков разных видов проводится совместно. Также имеется возможность преобразования вида энергии и перевода её в другую энергетическую подсистему. При этом гибридная энергоустановка потребителя позволяет провести преобразование её к виду, предпочтительному для потребителя, по месту потребления, независимо от вида поставляемой энергии. Совместный учёт работы систем позволяет провести оптимизацию и сэкономить 5-7% от общего расхода энергии и ТЭР. Другая возможность повышения эффективности и надёжности систем в энергологистической системе связана с возможностью переброса энергии при авариях или перегрузке участка сети через соединяющие эти системы энергетические установки, которые являются кросс-элементами этих систем с соответствующими характеристиками "стоков" или "истоков" и потерь.
Сегодня фактически уже складывается новое направление экономического анализа в энергетике - комплексного анализа ранее абсолютно независимо рассматриваемых систем.
8. Формирование автоматизированных самовосстанавливающихся и самонастраивающихся энергосистем. Самонастраивающаяся система электроснабжения позволяет провести диагностику систем или их блоков (генерации, сетей или потребителей), предсказать отказ, выбрать (рассчитать) наиболее оптимальную конфигурацию рабочей части системы и произвести переключения на новую оптимальную схему электроснабжения в соответствии с локализацией (отключением) неисправной части системы. Для диагностики нужны скоростные фазочувствительные цифровые датчики, а также средства связи, работающие в режиме реального времени. Система управления для реализации эффективной работы должна быть распределённой. Координация деятельности распределённых центров управления осуществляется централизованной системой управления.
С учётом энергологистических подходов на основе самовосстанавливающейся системы может быть реализована самонастраивающаяся система, учитывающая текущую стоимость энергии и энергоносителей разных видов.
9. Создание автоматизированного розничного рынка, сочетающегося с автоматизированным оптовым рынком энергии. Формирование самонастраивающейся системы позволяет проводить оптимизацию потребления, производства и покупки энергии на оптовых рынках в режиме текущего времени. В случае задания графика по времени автоматизированного потребителя розничный рынок автоматически производит перераспределение мощности, вырабатываемой гибридными установками потребителя соответствующего вида энергии, оптимизирует пути поставки, а также приобретение энергии на оптовом рынке. Процесс полностью сочетается с проводящейся автоматизацией электрических станций "большой" энергетики.
10. Создание системы нештатного энергообеспечения объектов за счёт использования энергетических установок транспорта. При освоении малонаселённых территорий и использовании малоэтажного строительства эффективные транспортные газодизели, используемые совместно с аккумулирующими гибридными установками, позволяют снизить суммарную потребность в мощностях. Двигатели транспорта повышенной проходимости или грузового транспорта используются для выработки энергии и синтетического топлива в нерабочие часы. В их отсутствие поддерживает энергоснабжение маломощная гибридная энергоустановка. Высокоэффективные транспортные энергоустановки могут использоваться для энергообеспечения и в случаях отказов и аварий штатных энергоустановок.

6. Что надо сделать? Однако рассмотренные выше технологические решения, схемные и режимные решения требуют грамотной адаптации к местным условиям. Низкий инвестиционный порог реализации распределённой энергетики может быть снижен еще больше - за счёт использования библиотеки инвестиционных проектов, т.е. "Библиотеки технических решений". Инвестиционные проекты "БТР" включают технико-экономические обоснования проектов и методики их адаптации к местным условиям, а оплата услуг по разработке проектов и консультациям производится из части прибыли, полученной от реализации проекта энергоснабжения с использованием распределённой энергетики.

Развитие распределенной энергетики полностью вписывается в поставленные на современном этапе цели развития страны - переход на инновационный путь развития и повышение качества жизни населения.

Безусловно, внедрение распределённой энергетики требует разработки соответствующих механизмов:

.финансово-экономических - грамотных инвестиционных решений, создания низкозатратной двухставочной тарифной системы, учитывающей потенциал используемого тепла, соответствующей налоговой политики, обеспечивающей преференции инновационным решениям;
.нормативно-правовых , начиная с принятия федеральных законов "О малой энергетике", "О теплоснабжении", кончая местными техническими условиями по использованию установок на местных видах топлива и др.;
.организационно-структурных - сочетания малых и крупных энергетических предприятий, координации их деятельности в рамках саморегулируемых организаций, территориальных и отраслевых ассоциаций, вовлечения в развитие высокоэффективной коммунальной энергетики собственников жилья - граждан, за счёт формирования городской потребительской кооперации и др.

Следует отметить, что в современных условиях можно говорить уже и о формировании инновационно-технологического механизма экономического развития, а также о важнейшей роли социально-политических аспектов достижения поставленных целей.

Разумеется, предстоит большая работа, но социально-экономические последствия её реализации крайне значимы. Однако любая работа окупится, ибо сегодня распределённая энергетика:

Снимает высокий финансовый порог переоснащения региональной (муниципальной) энергетики;
. создаёт сферу развития малого и среднего бизнеса, без которых заведомо снижается эффективность экономики за счёт неосвоенных ниш, не интересных для крупного бизнеса;
. гарантирует востребованные на внутреннем рынке заказы для наших оборонных предприятий, загруженных сегодня лишь на 10%;
. позволяет реализовать энергетическую систему, устойчивую к внешним возмущениям - её невозможно вывести из строя, как ЛЭП в Белграде (за счёт распыления проводящих агентов или уничтожения одной опоры);
. является площадкой для опробования и внедрения инновационных решений (попробуйте-ка внести изменение в оборудование и компоновку большой станции, да ещё требующей отвода кусочка земель - сбор трёх с половиной сотен подписей займет года три);
. имеет очень высокий потенциал эффективности за счёт возможности вовлечения в оборот нестабильных возобновляемых источников энергии;
. принципиально меняет соотношение стоимости энергообеспечения в больших и малых городах, в связи с чем должен измениться вектор миграции, должна прекратиться депопуляция малых городов;
. ключ к освоению территории и природных ресурсов страны, которые потенциально стóят 350 трлн. долл. при том, что их фактическая рыночная цена близка к нулю из-за отсутствия инфраструктуры доступа;
. средство капитализации интеллектуального потенциала всего населения - от местных кулибиных и черепановых до нобелевских лауреатов;
. плацдарм для продвижения отечественных инновационных решений на мировые рынки в освоенной и признанной миром сфере хозяйственной деятельности России.

Такие возможности нельзя упускать!

К сожалению, Министерство энергетики РФ пока не видит острой необходимости в поддержке становления новой инновационной отрасли на стыке традиционной энергетики, электроники и машиностроения. Однако, может быть, за такую задачу возьмутся непосредственно Правительство России и государственные корпорации?